Who can absorb the investment risks of the Energiewende

PPAs as a tool to allocate risk to the most suitable parties

November 2018
PPA negotiations try to strike a deal between the technology cost and the fair market value perspective.

Developers take the perspective of technology cost during PPA negotiations...

...while off-takers should focus on the perspective of fair market value of power.

<table>
<thead>
<tr>
<th>Levelized cost of electricity (LCOE), EUR/MWh</th>
<th>Fair value of PPA contract cash flows, EUR/MWh</th>
</tr>
</thead>
<tbody>
<tr>
<td>10%</td>
<td>Wholesale price</td>
</tr>
<tr>
<td>8%</td>
<td>Asset profile</td>
</tr>
<tr>
<td>6%</td>
<td>Annual var.</td>
</tr>
<tr>
<td></td>
<td>Short term var.</td>
</tr>
<tr>
<td></td>
<td>GoO</td>
</tr>
<tr>
<td></td>
<td>Capital at risk cost</td>
</tr>
<tr>
<td></td>
<td>Fair value of contract</td>
</tr>
</tbody>
</table>

PPAs can create value for both parties if the right trade-off between fixed cash flow for asset to reduce financing cost and value-at-risk for off-taker is struck and priced according to market value.

Source: Aurora Energy Research
Fair market value of an onshore wind fixed price 4-year post-subsidy PPA is 35.0 EUR/MWh for volume as-produced

Contract: Duration: 2020 for 4 years // Price: fixed price\(^1\) // Volume: as-produced & no economic curtailment

Fair price calculation for onshore wind fixed price PPA, EUR/MWh

- **Expected energy value of onshore profile over next 4 years is 9 EUR/MWh below baseload**
- **Price effect of high/low wind year increases expected value**
- **Forecast uncertainty Day-ahead to final delivery decreases value**
- **Assuming today's GoO price**
- **The cost of holding capital to cover a P90 loss is 1.1 EUR/MWh**
- **Off-taker holds downside risk if market price falls below contract value**

1. **Wholesale price**
2. **Asset profile**
3. **Interannual variability**
4. **Short-term forecasting cost**
5. **Value of energy**
6. **GoO**
7. **Capital at risk cost**
8. **Admin cost**
9. **Fair value of contract**

\(^1\) Prices expressed in real 2017. Fixed price always refers to an inflation-linked rate in this study.

Source: Aurora Energy Research
Risk of declining market value of contract needs to be covered with underlying capital

Key contract indicators:

- **Value at Risk (VaR):** Average EUR/MWh contract value risk between P50 and P90 forecast
- **Cost of risk capital:** Cost of holding capital to cover expected cumulative value-at-risk

Onshore wind delivered energy value (energy and GoO) EUR/MWh

Capital is held to cover P90 risk, reducing the fair value of the contract

1) Contract price before accounting for risk

Source: Aurora Energy Research
For long-term contracts which could enable green-field developments VaR rises to 11 EUR/MWh

Value of delivered energy in a offshore wind PPA\(^1\), EUR/MWh

Depending on off-taker's exposure to power prices, value of hedge can represent up to 5.2 EUR/MWh value add

Cost of value at risk applied to price to give fair value in case where no hedge benefit to off-taker

1) Capture prices shown for a representative asset, with 2 EUR/MWh GoO value added, and intraday and interannual terms totaling 0.87 EUR/MWh subtracted

Source: Aurora Energy Research
Fair market value of an offshore wind fixed price 12-year PPA is 44.4 EUR/MWh for volume as-produced

Contract clause: Duration: 12 years starting 2023 // Price: fixed price // Volume: as-produced & no economic curtailment

Fair price calculation for offshore wind with fixed price PPA, EUR/MWh

<table>
<thead>
<tr>
<th>Value at risk (EUR/MWh)</th>
<th>11.2</th>
<th>Off-taker holds downside risk if market price falls below contract value</th>
</tr>
</thead>
</table>

Expected energy value of onshore profile over next 12 years is 7.4 EUR/MWh below baseload

Price effect of high/low wind year increases expected value

Forecast uncertainty Day-ahead to final delivery decrease value

Assuming today's GoO price

The cost of holding capital to cover a P90 loss is 5.9 EUR/MWh

Wholesale price | **Asset profile** | **Interannual variability** | **Short-term forecasting cost** | **Value of energy** | **GoO** | **Capital at risk cost** | **Admin cost** | **Fair value of contract** |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>5.9</td>
<td>11.2</td>
<td>44.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
To a certain level a rising price floor improves project economics

Impact of price floors on equity IRRs

<table>
<thead>
<tr>
<th>Price floor in EUR/MWh</th>
<th>Typical IRR range for equity investors in infrastructure¹</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Fixed price most profitable as off-taker is accepting all risk and discount is lowered by foregone upside</td>
</tr>
<tr>
<td></td>
<td>Raising floor returns little value</td>
</tr>
<tr>
<td></td>
<td>Benefit of higher price floor outweighs bigger value discount</td>
</tr>
</tbody>
</table>

CAPEX assumptions: Aggressive(-25%) Returns for fixed price

Equity IRR² in %

Debt/Equity ratio

1) EDHEC Infrastructure Institute (2017). 2) Nominal IRR for fully leveraged equity

Source: Aurora Energy Research
Increasing floor beyond 35 EUR/MWh has marginal return for equity but adds significant VaR for off-taker

CAPEX assumptions:

Returns for fixed price
Aggressive(-25%)

Impact of price floors on equity IRRs

Impact of price floors on Value-at-Risk

Typical IRR for equity investor

Who is best able to manage long-term value at risk?

Source: Aurora Energy Research
C&I ability to take power price risk is exacted to be limited to ~62 TWh/a or 1 bn EUR value at risk

Estimate of C&I PPA market potential, TWh/a

Short duration PPA potential: Ability to absorb power price risk depends on share of power on total cost & level of competition¹

Long duration PPA potential: PPAs are only bankable if off-taker have sufficient credit-rating²

1) We defined a hurdle rate per industry as maximum EBIT impact of P90 risk realisation between 0.5 – 1.5% depending on level of competition. 2) Assumed discount based on fragmentation of industry

= 1 bn EUR value at risk p.a. or 12 bn of investment payback time

= ~ 14 GW offshore

Source: Aurora Energy Research
Until 2030 Energiewende requires investments with 24 – 33 bn EUR in value at risk, ca. twice C&I absorbability

Cumulative value at risk over investment payback time vs. ability to absorb risk, bn EUR

Cumulative value at risk of RES investments with CoD 2020 until 2025/30

65% RE target
- Solar
- Offshore
- Onshore

-41% -62%
Food for thought

Industry

- Large off-taker who are able to absorb power price risk are a scarce resource and thus have a strong negotiation power
- Building up strong relationship with C&I player can be a key success factor for RES developer

Utilities

- To transition to a “subsidy free” Energiewende the market needs large risk accumulators who are able to manage long-term power price risks
- This favours a strengthening of the classic utility model.

Regulation

- If the aim is to transition away from subsidies regulator should focus on reducing downside risks e.g.: Carbon price floor, fixed long-term build out targets etc.
Disclaimer

General Disclaimer
This document is provided “as is” for your information only and no representation or warranty, express or implied, is given by Aurora Energy Research Limited (“Aurora”), its directors, employees, agents or affiliates (together its “Associates”) as to its accuracy, reliability or completeness. Aurora and its Associates assume no responsibility, and accept no liability for, any loss arising out of your use of this document. This document is not to be relied upon for any purpose or used in substitution for your own independent investigations and sound judgment. The information contained in this document reflects our beliefs, assumptions, intentions and expectations as of the date of this document and is subject to change. Aurora assumes no obligation, and does not intend, to update this information.

Forward looking statements
This document contains forward-looking statements and information, which reflect Aurora’s current view with respect to future events and financial performance. When used in this document, the words "believes", "expects", "plans", "may", "will", "would", "could", "should", "anticipates", "estimates", "project", "intend" or "outlook" or other variations of these words or other similar expressions are intended to identify forward-looking statements and information. Actual results may differ materially from the expectations expressed or implied in the forward-looking statements as a result of known and unknown risks and uncertainties. Known risks and uncertainties include but are not limited to: risks associated with political events in Europe and elsewhere, contractual risks, creditworthiness of customers, performance of suppliers and management of plant and personnel; risk associated with financial factors such as volatility in exchange rates, increases in interest rates, restrictions on access to capital, and swings in global financial markets; risks associated with domestic and foreign government regulation, including export controls and economic sanctions; and other risks, including litigation. The foregoing list of important factors is not exhaustive.

Copyright
This document and its content (including, but not limited to, the text, images, graphics and illustrations) is the copyright material of Aurora[; unless otherwise stated]. No part of this document may be copied, reproduced, distributed or in any way used for commercial purposes without the prior written consent of Aurora.