Elektrolyseanlagen für Multi-MW Anwendungen
An Overview of McPhy

KEY FIGURES

- 5 sites: France, Germany, Italy, China
- Flagship Reference:
 > 17 MW Electrolysis
 > 23 HRS in operation
- 15 years of R&D
- ~ 100 employees
- Strategic partnership with EDF
A complete range of hydrogen equipment to design turnkey projects

Electrolyzer for Industry & Energy
Hydrogen Refilling Station for Mobility

Supported by Strong Industrial assets and know-how

McPhy Italy: Manufacturing Center
McPhy Germany: Engineering Center
McPhy France: R&D, HRS Center
HRS - references

23 HRS
A DAILY POTENTIAL OF
69,000
ZERO-EMISSION KILOMETERS
#CLEANMOBILITY

Unlimited HRS designs

10,000 kg / day

4,000 kg / day

2,000 kg / day

Unique combination between our high-pressure alkaline electrolysis technology and our HRS know-how

Symbio Grenoble | 2015
McPhy LMF | 2015
City of Paris | 2015
ENGIE GNVert Lyon | 2015
Valence Romans Agglo | 2015
City of Rouen | 2017
Sarreguemines | HRS + ELY | 2017
ENGIE Lab Singapour | 2018
RiverSimple UK | 2018
Semitan Nantes | 2018
Rungis | 2018
SMT-AC (buses) | HRS + ELY | 2019
H2 Mobility Deutschland | 2019
CC Touraine Vallée de l'Indre (Sorigny) | 2019
EAS-Hymob (x7) | 2019
ENGIE GNVert Lyon | HRS + ELY | 2019
Confid. | HRS + ELY | 2019
McPhy’s references in Ely: learnings, skills & assets

<table>
<thead>
<tr>
<th>Electrolysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>**100 MW</td>
</tr>
<tr>
<td>A total footprint below 4,500 m²</td>
</tr>
<tr>
<td>**20 MW</td>
</tr>
<tr>
<td>Fast dynamic response time</td>
</tr>
<tr>
<td>**4 MW</td>
</tr>
<tr>
<td>High pressure production (30 bar)</td>
</tr>
<tr>
<td>Breakthrough Alkaline ELY Technology</td>
</tr>
<tr>
<td>Unique combination between our high-pressure alkaline electrolysis technology</td>
</tr>
</tbody>
</table>

McPhy’s introduction

McPhy has installed 17 MW of high capacity electrolyzers, more than 7 tons of clean hydrogen produced per day.

<table>
<thead>
<tr>
<th>Capacity</th>
<th>Location</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 MW</td>
<td>Audi</td>
<td>2013</td>
</tr>
<tr>
<td>0.5 MW</td>
<td>Prenzlau</td>
<td>2013</td>
</tr>
<tr>
<td>0.5 MW</td>
<td>H2Ber</td>
<td>2014</td>
</tr>
<tr>
<td>4 MW</td>
<td>Hebei</td>
<td>2017</td>
</tr>
<tr>
<td>1 MW</td>
<td>EnergieDienst</td>
<td>2017</td>
</tr>
<tr>
<td>1 MW</td>
<td>Jupiter 1000</td>
<td>2018</td>
</tr>
<tr>
<td>0.5 MW</td>
<td>RAG</td>
<td>2018</td>
</tr>
<tr>
<td>0.5 MW</td>
<td>SMT-AG</td>
<td>2019</td>
</tr>
<tr>
<td>2 MW</td>
<td>Confid.</td>
<td>2019</td>
</tr>
<tr>
<td>1 MW HCD</td>
<td>Confid.</td>
<td>2019</td>
</tr>
</tbody>
</table>

McPhy | March 2019
By the way, how does an electrolyzer look like?

1 MW Electrolyzer (indoor installed)

Stack under erection (outdoor case)

Transformer/Rectifier

Demin water

Rule of Thumb:
200Nm³/h or 18kg/h per MW electrolyzer
McPhy in Hydrogen production units (Electrolyzers)

3 main technologies for electrolyzers:
- Solid Oxide Electrolyzer Cell
- Alkaline (atmospheric & pressurized)
- PEM (atmospheric & pressurized)

3 ranges of McPhy electrolyzers:

1. Less than 500 kW
 - Small electrolyzer “McLyzer” type
 - Delivered in containers “plug & play”

2. from 500 kW to 4 MW
 - High Current electrolyzers “McLyzer HC” type
 - Delivered in containers “plug & play”

3. 4 MW to > 100 MW
 - Multi MW units: Standard brick 4 MW, standard cluster 20 MW, up to > 100 MW platforms
Our Core Modules

<table>
<thead>
<tr>
<th>McLyzer 200-30</th>
<th>McLyzer 400-30</th>
<th>McLyzer 800-30</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capacity:</td>
<td>Capacity:</td>
<td>Capacity:</td>
</tr>
<tr>
<td>200 Nm³/h</td>
<td>400 Nm³/h</td>
<td>800 Nm³/h</td>
</tr>
<tr>
<td>> 430 kg/d</td>
<td>> 860 kg/d</td>
<td>> 1.720 kg/d</td>
</tr>
<tr>
<td>Containerized solution: 1 x 30’ + 2 x 20’</td>
<td>Containerized solution: 2 x 20’ + 1 x 40’</td>
<td>Base for Multi-MW plants</td>
</tr>
<tr>
<td>Solution for HRS up to 400kg/d , PTG and PTP</td>
<td>Solution for large HRS, PTG and PTP</td>
<td></td>
</tr>
<tr>
<td>Spec. Energy consumption: 5 kWh/Nm³</td>
<td>Spec. Energy consumption: 5 kWh/Nm³</td>
<td>Spec. Energy consumption: 5 kWh/Nm³</td>
</tr>
</tbody>
</table>
Example of a 2MW unit
(similar principle as for 0.5 or 1MW)

Layout of a McLyzer 400-30 – not contractual / for reference only – actualization of layout will be provided with basic design informations.
Example of a 0.5MW unit (valid up to 2MW)
Exemple of a 0,5MW unit (valid up to 2MW)
PtG | References under operation: Audi (Werlte) - 2013

Industrial hydrogen & Power-to-Gas: Audi, One of the first PtG project in Europe

• Operated by Audi
• 6 MW atm Hydrogen production
• In operation since October 2013
H₂BER | the First Multi-Energy-Refueling Station in Europe

KEY FIGURES

- Electrolyzer connected to both the grid and the wind park
- World first Multi Energy refueling Station operated by Total
- Located at the airport of Berlin
- Commissioning: May 2014

McLyzer 250 kg/day
42 bar system Electrolyzer
H₂BER | the First Multi-Energy-Refueling Station in Europe

Concept:
H₂BER | the First Multi-Energy-Refueling Station in Europe

Proven:
✓ Overall Stack efficiency of 83%
✓ Utilization of electricity from wind by 99% despite high load changes during the energy supply
✓ Production of hydrogen with a stable, high quality fit for Fuel Cell Electric Vehicles like Toyota, Hyundai, Mercedes Benz etc.
✓ Gas is produced with 30bar pressure, optimized for industrial solutions and direct injection into the gas grid.

Red: Energy Input
Blue: Energy conversion by electrolyser
Green: deviation in %
H₂BER | the First Multi-Energy-Refueling Station in Europe

Red: Energy Input
Blue: Energy conversion by electrolyser
Green: deviation in %

5 sec (measuring step 1 sec)
PtG | EnergieDienst, ENBW Group (Germany) 1 MW at 30 bar

- First hydrogen project in partnership with Center For Solar Energy
- 2 McLyzer 100 : 200 Nm3/h – 1 MW at 30 bar
- Inauguration November 2018, commissioning in May
- H₂ application : mobility, Industry, Storage
HEBEI I 4-10W Platform

- Realistic outlook to a 10MW-platform today (HEBEI):
 - Currently the shown layout is equipped with 4 Module of 2 MW with stacks of 0,5 MW
 - Complete showcase for a wind power driven hydrogen plant incl. truck-out infrastructure and future HRS (400 kg)
McPhy to set up its first station for 6 hydrogen buses in the Hauts de France region

KEY FIGURES

• Deployment scheduled in the summer of 2019
• The future Bulle 6 line will be the first in France exclusively operated with hydrogen buses
20 MW Cluster – General Architecture & Key Systems

MCC/Control cabinets
Designed by McPhy, Manufactured by approved sub-suppliers

Electrolyzer modules (4MW)
Key component: manufactured in-house and by single source suppliers

KOH Handling station
Manufactured by sub-suppliers (volume capacity depends on plant size)

Instrument air system
Manufactured by sub-suppliers

Transformer/Rectifier
Supplied by 2 approved sub-suppliers

Purification & Drying unit
Manufactured by sub-suppliers (Designed in cooperation for McLyzer products)

Demin water plant
Manufactured by approved sub-suppliers

Cooling system
Manufactured by approved sub-suppliers
Industrial Design:

from 100 MW Platform to **GW ELY Plant**

STEP II > 20 MW Cluster and 100 MW ELY Plant
2019: 20 MW Cluster
2020: 100 MW Plant

STEP III > 100 MW Cluster and GW ELY plant
2021: 100 MW Cluster "New Design"
2025: 1 GW Plant

100 MW Plant: 20 MW Cluster X 5

GW ELY Plant: 100 MW Cluster X 10
McPhy’s 20MW cluster, containerized/skidded
Electrolysers, Hydrogen storage systems, Refueling Stations, Combined Heat and Power Plants are all System designed, engineered and manufactured in Europe.
The Business Case for Green Hydrogen in Germany

Targets for Hydrogen Price
- 2 €/kg for industrial used Hydrogen (SMR is state-of-the-art)
- 4-6 €/kg for mobility

1 MW electrolyser
- 8,000 hrs of operation at nominal load per year
- 150 €/MWh
- ~11 €/kg production cost

10 MW electrolyser
- 8,000 hrs of operation at nominal load per year
- 40 €/MWh (energy intensive)
- ~3 €/kg production cost

Conclusion
- For small scale systems the electricity price prohibits any viable business case
- For large scale systems we come close to conventional hydrogen production methods. In order to be competitive to grey hydrogen sources today, subsidies or CO₂ taxes are necessary.
Thank you!

Christopher Braatz
christopher.braatz@mcphy.com