

WHO IS GEO-NET?

GEO-NET has been conducting developments, advisements and analysis in the field of wind energy since 1996.

GEO-NET is a client oriented consultant for privat and public customers – from communities to state authorities.

GEO-NET has branch offices in Ukraine, South Africa, Vietnam and Brazil

+ TEAM

The GEO-NET-Team consists of an interdisciplinary group of 43 experts coming from various scientific backgrounds:

- + Geographers
- + Meteorologists
- + Engineers
- + Software engineers
- + etc.

According to **DIN EN ISO 9001:2008** by TÜV NORD

International accredited as wind potential analysis and energy yield calculation laboratory including measurement campaigns and reference yield calculations according to **DIN EN ISO/IEC 17025:2005** by the DAkkS.

+

EXPERIENCE WORLDWIDE

Measurements, potential studies and expertises of GEO-NET

Realised wind farms based on wind analyses conducted by GEO-NET:

318 MW

102 MW

Turkey:

Italy:

Sweden:	7,5 MW	Hungary:	5,6 MW	Ukraine:	82,5 MW	Brazil:	500 MW
Germany:	5.500 MW	Bulgaria:	104 MW	Czech Republic:	62 MW	Chile:	90 MW
Belgium:	9 MW	Romania:	519 MW	Poland:	320 MW	Uruguay:	50 MW
Swizerland:	2,3 MW	Croatia:	82 MW	Latvia:	20,7 MW		
France:	480 MW	Greece:	25.5 MW	Australia:	844 MW		

EXPERIENCE IN THE UKRAINE

GEO-

Measurements, potential studies and analysis made by GEO-NET

Wind measurement: A

wind potential study/energy yield assessment: ▼

... What can we say from experience in > 50 projects and 12 years in Ukraine:

GOOD Windpotential can be expected at the coast line of black sea and the southern part.

GOOD Windpotential also at selected sites inlands.

Carpathian Mountains: ... it depends. Sites with good wind potential and medium wind potential (very) close together. Elevated sites do not necessarily have good wind speeds.

→ Public available wind maps for Ukraine have so far no validation and show significant deviations from measurements, especially in complex terrain

Windpotential of Ukraine

- There is wind potential and space for wind farms also inlands, which isn't yet explored by developers, most projects concentrate on the coast line
- Projects in Carpathian mountains:
 - Site selection should be made very carefully considering access route, available area for placement of turbines, number of measurements needed...
 - Budget for single measurement is increased by
 +50 100% due to need for heating and independent power supplies.
 - Improper power supply (often seen: heating supplied by solar panels ⊕) means to loose data and miss good wind conditions during winter.

Besides wind potential...

- Procedure for payments is much different: Specific supply or service contract required to release payments to foreign accounts.
- Custom procedure often "takes some time" (...)
- → Use experiencend supply chains to avoid delays and high costs for building this experience
- Local contractors are available (e.g. met mast supply) and solves above issues to a high extend, supervision is highly recommended to safeguard compliance of work to international standards

Search Area Procedure

DETERMINATION OF SUITABLE SITES

+ SITE ASSESSMENT

Identification									
		Wind Speed		Distance Transformer Station		Elevation above Ground			
Ser NO*	Name	MEAN (m/s)	Valuation-1	km	Valuation-2	MEAN (m)	Valuation-3	Sum of Valuation, Rank Order	
2	YEREVAN-O	7,0	4	9	4	2116	4	12	
6A	CHAMBARAK-S	7,0	4	6	4	2425	2	10	
6B	CHAMBARAK-S	7,2	4	7	4	2679	0	8	
3	GAVAR-S	6,5	2	6	4	2342	2	8	
1	GYMRI-O	6,6	2	12	2	2194	4	8	
4A	GYMRI-N	7,3	4	12	2	2727	0	6	
48	GYMRI-N	7,1	4	14	2	2665	0	6	
10	GORIS-N	6,4	0	9	4	2326	2	6	
5	TUMANIAN-W	6,3	0	12	2	1868	4	6	
8	ARTIK-S	6,6	2	11	2	2863	0	4	
7	SISIAN-N	6,9	2	16	2	2747	0	4	
9	APAHAN-S	6,4	0	17	0	2646	0	0	
		_1	7	1]	2			
	Valuation:	Value	Points	Value	Points	Value	Points		
		>7,0	4	<10	4	<2250	4		
		7.0-6.5	2	10-17	2	2250-	2		

7,0-6,5

10-17

>17

2500

>2500

^{* =} The numeration corresponds to the labeling in the "Power Density and Power Supply in the Search Areas" map

⁺TOP LOCATIONS

Example: WIND ATLAS UZBEKISTAN (2015)

Countrywide modeling of wind conditions with FITNAH 3D (2km grid)

Selection of areas for 2 Windparks with each 100 MW

WIND POTENTIAL STUDY Uzbekistan

GEO-NET, 2014-2016

Categories:

I: Moderate complex Terrain:

- good wind conditions
- Grid and roads available

II: Complex Terrain:

- steep descents and ascends
- great elevations < 3000m
- good wind conditions
- Grid and roads available

III: Complex Terrain:

- steep descent and ascends
- greatest elevations > 3000m
- good wind conditions
- Grid and roads available

FITNAH. WHAT'S THAT?

FITNAH is a three dimensional, non-hydrostatic mesoscale model (GROSS, G.; 1991) utilized for the calculation of wind fields and climatic parameters (e.g. cold air mass flows, temperature fields).

FITNAH is for Flow over Irregular Terrain with Natural and Anthropogenic Heat-Sources.

FITNAH has been developed by Prof. Dr. Günther Gross (GROSS, 2002) and is constantly improved and updated by Prof. Dr. Gross and GEO-NET.

FITNAH is more than CFD: it is able to take into acount climatologic parameters

Example: Use of several data sources at a large-capacity wind field calculation.

Various re-analyzes and wind data from other sources can be used as input parameters.

Advantage: realistic representation by higher data density

Representation of grid fields in one height

- + realistic simulation of wind flow even over complex terrain like the caparthian mountains
- + regional climatic phenomena and regional wind regimes can be simulated
- + detailed modelling of forests, settlements, cities, industrial areas etc.
- + wide range of possible grid resolutions: 50m 5 km
- + wind field simulations can also be carried out **irrespective of wind measurements**

LiDAR ressource measurement

- + Small and portable
- + Measuring hights up to 290m
- + ...

Challenges

Data evaluation requires advanced knowledge:

- + characteristics of measurement values different compared to cup anemometers
- + measurement error and uncertainties are quite sensitive on terrain and measurement location

Requirements for bankable LiDAR campaigns

Requirements for LiDAR campaigns according to current international guidelines (MEASNET 2016, Annex C2):

- 1. Type specific classification (type specific!) according to IEC 61400-12-1 Ed. 2
 - → Leosphere

Why?:

uncertainties depent on on environmental conditions

- **2. Verification/Validation/Certification** according to IEC 61400-12-1 Ed.2 or IAE Wind
 - → Before and after each measurement (device specific!)

Why?:

- ✓ Safeguard tracebility to national standards (cup anemometer)
- ✓ Proove correctness of measurement values (calibration)
- ✓ Determination of uncertainties

Similar to calibration cup anemometer

Comparision of LiDAR data to data calibrated cup anemomometers

Objective:

- + Traceability and calibration of LiDAR
- + Determination of measurementuncertainties

Why?

+ measurement uncertainties significantly influence uncertainty of AEP calculation (P75, P90)

By experience from 3 campaigns in Ukraine we can say:

LiDAR:

- Short Realisation time (it depends...: custom procedure, power supply...)
- Measurement at greater heights than met mast
- Measurement at variouse locations in a wind farm, if there is a met mast operational and efficiently reduce uncertainty / increase P75/P90
- Verification can be made at local met masts

Disadvantage:

- For one campaign, investment usually higher than for a met mast
- Several types available, not all are suitable and provide good data quality

