Load sharing in wind turbine gearboxes. Reinvented.

Pontus Karlsson, CTO

MSc Mechanical Engineering Certified PMP

Wind turbines | failure rate and downtime

Gearbox exchange

€200K - €500K Up to 10% of total turbine cost

Component cost

6-7 days

Downtime

Site dependent

Replacement work

Failure distribution

Gearbox design challenges

Engineering

- » Transient loads
- » Temperature range
- » Wear
- » Particles / oil contamination
- » Viscosity LSS to HSS
- » Efficiency

Manufacturing

- » Large components
- » Precision and tolerance
- » Uneven load sharing
- » L₁₀ Time when 10% of the bearing fails (probabilistic)

Current status

» Lifetime hard to reach

Gearbox failures

Load transients is one contributor

- » Gusts
- » Blade passing tower
- » Air density variation
- » Turbulence
- » Fault events

Key challenges in gearbox design

Efficiency

Load sharing

Load transients

Bearing life

Maintenance

This is Cascade Drives

- » Founded in 2014
- » Six highly skilled employees
- » Unique patented solutions
- » Two core products with benefits in multiple application areas

Our potential and track record

- » 7 customer-financed pilots in different application areas
- » 71 000 MSEK global addressable market growing at +5%
- » Enabler of transition to allelectrical industrial systems

We enable the transition to all-electrical systems and contribute to global sustainable growth.

Linear actuators

Heavy mobile equipment

» lifting, steering, tipping

Servo presses

Pressure boosters

Planetary gears

Electric vehicle power trains
Wind-power turbines

max load

Shock load resistance

The built-in pinion flex, makes cdGear resistant to impulse shock loads.

- » Longer life
- » Lower TLC
- » Increased reliability
- » Less maintenance

Shock loads are effectively absorbed, eliminating risk of gear tooth damages.

Track record

Prototypes applications delivered

- » Lifting
- » Steering
- » Pressing

Verified load sharing capabilities

Endurance test rigs

Benchmark 2 MW

Traditional layout

- » One planetary step
- » Two parallel steps

Concept layout

- » One compound planetary step
- » One parallel step

Benchmark 2 MW (cont'd)

Stage	Gear	Number of teeth	Module [mm]	Helical angle [deg]	Pressure angle [deg]	Ratio	Tooth width [mm]
1	Sun	21	15	8	25		395
	Planet (x 3)	37	15	8	25	5,57	390
	Ring	96	15	8	25		395
2	Gear	97	11	10	20	4.00	310
	Wheel	23	11	10	20	4,22	320
3	Gear	103	8	10	20	4,90	180
	Wheel	21	8	10	20		190
	Total					~115	

Design constraints and load case

- » Safety factors according to IEC
 - Pitting 1,25
 - Root fatigue 1,53
- » Design life
 - 20 years
- » Constant speed
 - 15 rpm
- » Wind class
 - III (Low wind)
- » Capacity
 - 2000 kW

Results | Compound 2MW gearbox

Compound vs traditional

- » Input / output shafts in identical position
- » Fits within given geometry
 - Margin to increase torque or
 - Reduce face width
- » Planet wheel load reduced
 - Distributed between more axles
 - Less transients and lower load per axle means bearing situation is improved
- » Load transients from rotor to HSS significantly reduced
 - Improves bearing dynamics
- » ISS removed no bearing issues
- » Planet wheels full load sharing between shafts

Wind turbine applications

- » Superior performance
 - High torque density
 - Reduces load transients to HSS
 - Full load sharing between planet gears
 - Utilizes more planet gears, less load per gear
- » Energy efficient
 - Increased ratio
 - Gear step reduced

- » Compact design
 - High torque density
 - Reduced weight/space requirement
- » Lower TCO
 - Increased bearing life due to lower bearing load
 - Less corrective maintenance
- » Retrofit

CASCADE

Pontus Karlsson, CTO

pontus.karlsson@cascadedrives.com

