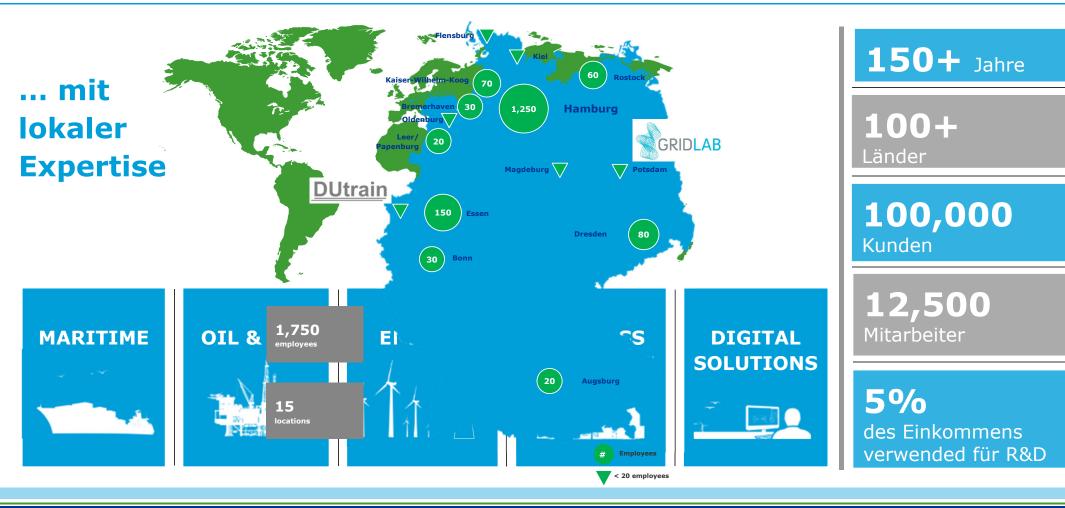



Agenda

O 1 Vorstellung DNV GL + DNV GL Energy


02 Hintergrund

Wind Strategies Management (WSM)

04 Ausblick

DNV GL: Eine globale Beratungsfirma

3 DNV GL © DNV·GL

DNV GL Energy: Leistungsportfolio

Wir liefern vertrauenswürdige Beratung entlang der gesamten energiewirtschaftlichen Wertschöpfungskette.

Energy Advisory

Beratung zu Energiemärkten und Energiemarkt Regulierung, Elektrische Netzplanung und Optimierung Beratung zu Wärmekonzepten und Sektorintegration

Power testing, inspections & certifications

Akkreditierte Prüfung und Zertifizierung von Geräten zur Übertragung und Verteilung von Flektrizität.

Sustainable energy use

Beratung zu Energieeffizienzprogrammen und Maßnahmen

Renewables Advisory

Beratung zur Erneuerbaren Energien: Project Engineering, Project Development, Messungen.

Turbine engineering support

Design von Windenergieanlagen, Komponenten, Beratung, Software

Renewables Certification

Akkreditierte Zertifizierung von Anlagen und Entwicklungsprojekten im Bereich der erneuerbaren Energien.

DNV·GL

Creating confidence across the energy value chain

Agenda

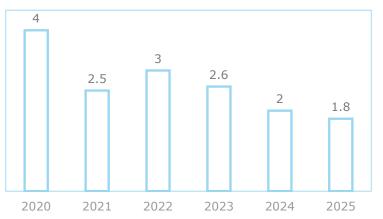
O1 Vorstellung DNV GL + DNV GL Energy

02 Hintergrund

Wind Strategies Management (WSM)

04 Ausblick

6 DNV·GL


Immer mehr Windkraftanlagen, in Europa und weltweit, werden älter.

DNV GL hilft sowohl bei Laufzeitverlängerung, als auch bei Ersatzinvestitionen und den Entscheidungen darüber.

Ausgangspunkt unserer Überlegungen:

- Eigentümer und Betreiber müssen den zukünftigen Betrieb der Anlagen planen
- **Investoren** haben die Möglichkeit, WEA, die sich am Ende ihrer regulären Nutzungsdauer befinden, zu kaufen
- Sowohl Eigentümer als auch Investoren werden mit einem komplexen Umfeld konfrontiert:
 - Lokal unterschiedliche Bedingungen beim Weiterbetrieb von Anlagen
 - Unbekannte Anfälligkeiten von alternden Anlagen -> OPEX, Unsicherheit der Lebensdauer
 - Verkauf des Stroms am Markt vs. Auktionen und Einspeisetarif
 - Volatile Energiemärkte mit vergleichsweise großen Risiken verglichen mit vergangenen festen Einspeisetarifen
 - Unsicherheit bei der verbleibenden technischen Lebensdauer der WEA
 - Schwierige Genehmigungsverfahren für Repowering
 - Laufzeitverlängerung in Deutschland reguliert

Beispiel:
Windparks, die aus dem EEG Tarif fallen in kommenden Jahren (GW)

Wir bieten unabhängige **strukturierte und Tool-basierte Unterstützung** in den Bereichen Lebenszeit, Finanzmodell und Risiken.

7 DNV GL © DNV·GL

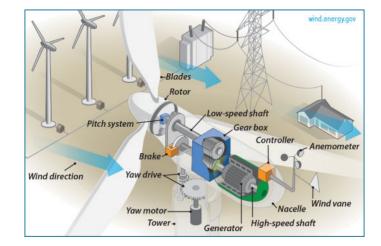
Klassifizierung der Komponenten von Windenergieanlagen

Wichtige bauliche Komponenten

- Sicherheitsrelevant
- Nicht austauschbar
- Ausfall führt zu ernsten Konsequenzen

Fundament

Turm


Gondelrahmen

Nabe

Bolzenverbindungen zwischen Hauptkomponenten

Systemkomponenten können wegen hoher Austauschkosten unter dieses Kategorie fallen (Rotorblätter)

Akzeptierte Schadenshäufigkeit in Windenergie: 1/1.000 – 1/10.000 pro Jahr

Einfachere
Versagensmodelle – **Lastmodelle** können
Ermüdungslebensdauer
vorhersagen

Austauschbare Systemkomponenten

- Nicht sicherheitsrelevant
- Austauschbar
- Ausfall führt nicht zwingend zu schwerwiegenden Konsequenzen
- Größte Anteil an O&M Kosten

Pitchsystem

Azimutsystem

Bremssystem

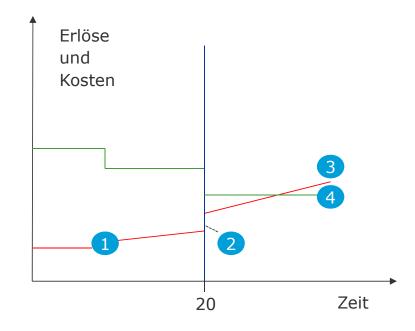
Bolzenverbindungen

Rotorblätter

Generator

Umrichter / Wechselrichter

Getriebe


Lager

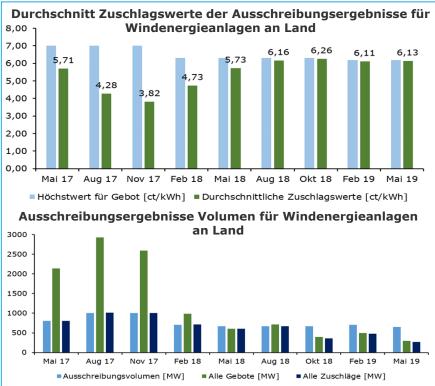
Hauptwelle

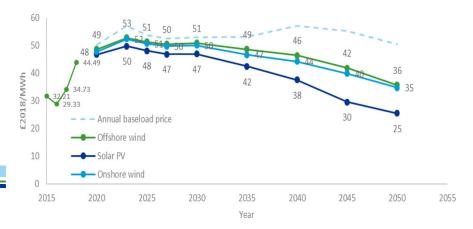
Betrachtung des Weiterbetriebs aus wirtschaftlicher Sicht

Die Analyse eines betriebswirtschaftlich sinnvollen Weiterbetriebs ist eine anlagenindividuelle Betrachtung.

- 1 Die originäre O+M Kostenbasis ist zu hinterfragen (können Pachten und O+M reduziert werden?)
- Es entstehen Kosten, um den Weiterbetrieb zu ermöglichen.
- 3 Es ist mit einem steigenden Ausfallrisiko zu rechnen, so dass die O+M Kostenfunktion eventuell steiler wird (wie hoch ist das Risiko in den Bauteilen?)
- Mit dem Auslaufen der Förderung werden nur noch Erträge zum Marktpreis erwirtschaftet (mit welchem Ertrag ist standortspezifisch zu rechnen?, wie optimiere ich den Ertrag (Produktion vs. Verschleiß)?

DNV·GL


Laufzeitanalyse und Weiterbetrieb


Bei Altanlagen steht eine Welt ohne EEG heute vor der Tür.

Einnahmen Kosten **Grundeinkommen aus EEG CAPEX** Erträge aus Markterlösen Zertifizierungs- und Zulassungskosten Kosten der Technik (Turbine, Turm, Kabel, etc.) Installationskosten Finanzierungskosten Projektrisiken Rückstellungen **OPEX** Betriebs- und Wartungskosten Nach DWG "Perspetktiven für Stromerzeugung den Weiterbetrieb von WEA" x Marktpreis (p) nach 2020, 2018: Betriebskosten

Quelle Hintergrund: Stiftung Offshore Wind

Quelle: BMWie

für Ü20 Windparks inkl. Gewinn

2.8 - 3.6 EURc/kWh

Agenda

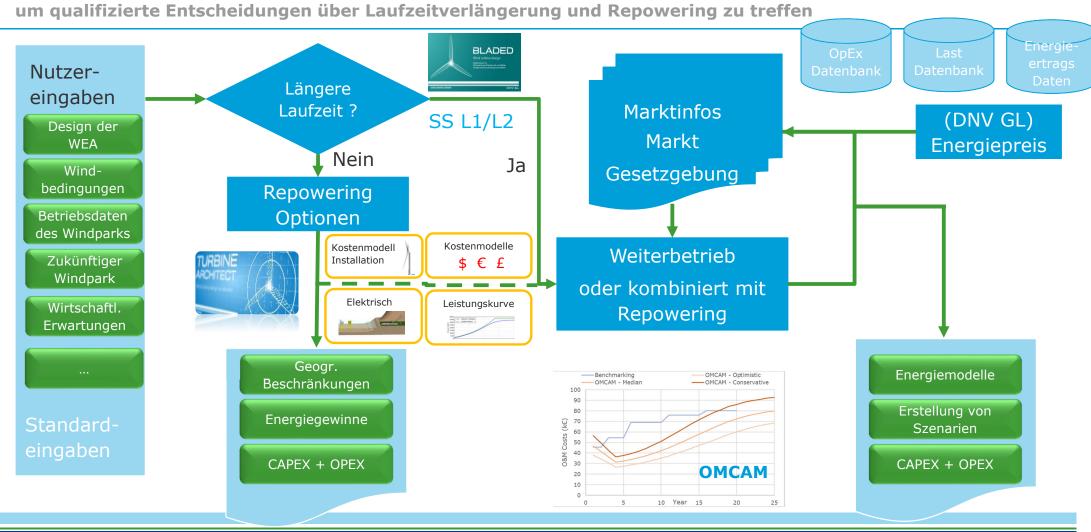
01

Vorstellung DNV GL + DNV GL Energy

02

Hintergrund

03


Wind Strategies Management (WSM)

04

Ausblick

Tools für die Windindustrie,

12 DNV GL © DNV·GL

13 DNV GL © SAFER, SMARTER, GREENER

WSM_1 | Customer Landing Page

My Analyses Custom Application Documentation

WINDFARM STRATEGIES MANAGEMENT

Your Projects

Project name	Last Saved			
High wind repowering	21 Mar '19			
Busan 1 end life analysis	11 Mar '19			
Busan 2 end life analysis	11 Mar '19			

State Running ••• Complete ••• Complete •••

New Project

DNV-GL 14 DNV GL ©

WSM_1 | Copy General

My Analyses Inspection information

Documentation

Busan 1 end life analysis

Lifetime outcome

Summary of results

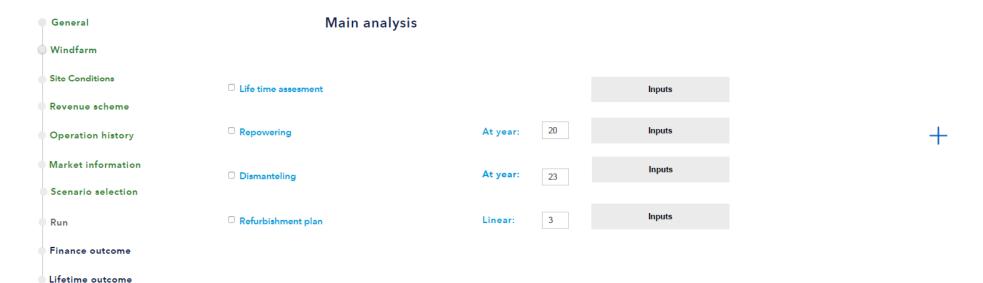
• General	Item	Data	Info
Windfarm	Turbine design life	20 years	(normal life is 20 years) •••
Site Conditions	Windfarm start date	11 Mar 2001	18 years old •••
Revenue scheme	Number of turbines	20	- •••
Operation history	Turbine type	Norvion 50	1000kW •••
Market information	Hub height	55m	- •••
Scenario selection	Design wind class	IIA	- •••
Run	Design wind class	IIA	- •••
Finance outcome			

DNV·GL 15 DNV GL ©

WSM_1 | Scenarios

My Analyses Inspection information

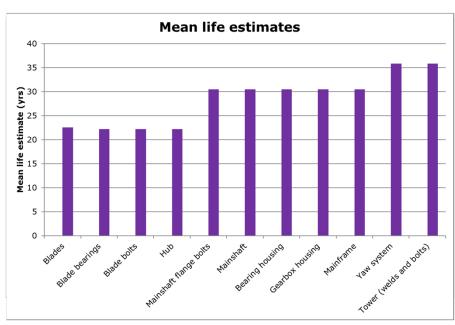
Documentation

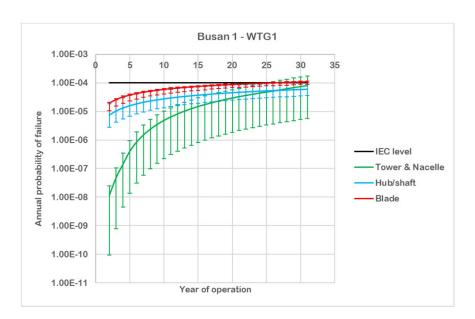

WINDFARM STRATEGIES MANAGEMENT

Busan 1 end life analysis

Summary of results

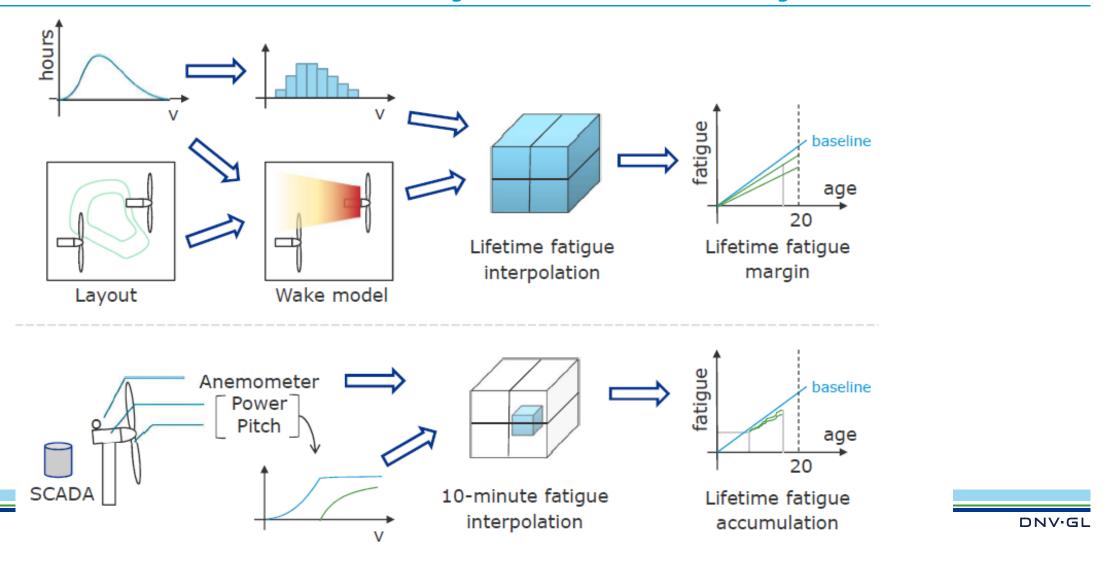
DNV-GL 16 DNV GL ©


WSM 1 | Lifetime outcome



Busan 1 end life analysis

Lifetime outcome



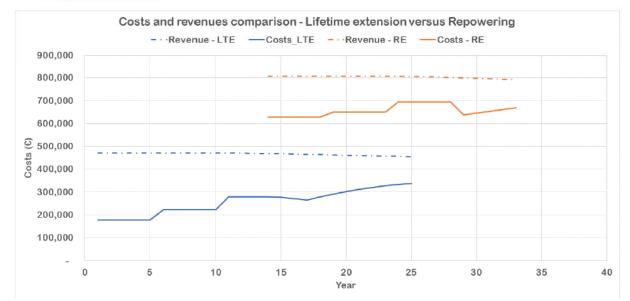
17 DNV GL © DNV-GL

Konventionelle Standorteinschätzung vs SCADA Datenbenutzung

WSM_1 | Finance outcome

My Analyses Inspection information

Documentation


WINDFARM STRATEGIES MANAGEMENT

Busan 1 end life analysis

Finance outcome

WSM_1 | Summary of results

My Analyses Inspection information

Documentation

WINDFARM STRATEGIES MANAGEMENT

Busan 1 end life analysis

General	Run	Case	Main Assumption	COD	End of life (average)	Investment in year	CAPEX / 1000 EUR	OPEX year / EUR/MWh	NPV / 1000 EUR			future sales	Operational Margin
Windfarm	#1	Lifeextension 1	Continued Ops until year 28				-	28.0	-	-	-	price -	EUR/MWh
	#2		P * 1.5 in 2 years				32.5	See details	33	0.1	106.3%	1.1	_
Site Conditions	#3		Continued Ops, reduced loads until year 38				-	22.0	-	-	_	_	4.3
	#4	Part Repowering + Lifeexte					24.0	See details	24	0.0	4.4%	0.0	See details
Revenue scheme	#5		P = 3.0 in 5 years				55.0	See details	55	0.1	8.0%	0.1	-
	#6		After year 20				0.5	19.5	1	-	-	-	15 *
Operation history	#7		P = 3.0 in 5 years			2021	55.0	See details	55	0.1	108.0%	1.1	-
	#8	WF1-LifeExRes 1	[include description]	2001-03-01	2022-01-07		2326.9	24.1	3,085	3,084.6	see refurb Sc	38.6	-3,046.0
Market information	#9	WF1-LifeExRes 2	[include description]	2001-03-01	2022-01-07	2021	2326.9	24.1	3,085	30.1	see refurb Sc	38.6	8.5
Scenario selection	#10	Busan WF-LifeExRes 1	With complete rotor exchange	2001-03-01	2030-04-12	2023	24604.3	28.6	-13,635	48.8	see refurb Sc	36.1	-12.7
	#11	-LifeExRes 3	With complete rotor exchange, assumed invest to be reduced by 50 %.	2001-03-01	2030-04-12	2023	12807.9	28.6	-3,930	39.8	see refurb Sc	36.1	-3.7
Run	#12		Assumed operation until first refurbishment needed	2001-03-01	2022-01-07	2021	3108.2	24.1	3,012	30.3	see refurb Sc	38.6	8.3
Finance outcome	#13	LITCEX 105 0	Assumes custom lifetime of 30 years without refurbishment needs	2001-03-01	2029-10-10	2031	9.6	29.0	7,460	28.8	see refurb Sc	36.1	7.3
	#14	-LifeExRes 6	Assumed operation until first refurbishment needed	2001-03-01	2022-01-07	2021	603.5	24.1	3,230	29.7	see refurb Sc	38.6	8.9
Lifetime outcome	#15	-LifeExRes_7	Assumed operation until first refurbishment needed. Do repairs only if paid back 5x	2001-03-01	2018-11-14	2021	390.5	22.3	1,413	27.4	see refurb Sc	38.6	11.2
Summary of results	#16	-Refurb 1	, , ,	2001-03-01	See details	See details	See details	-	See details	-	See details	-	-
Summary of results	#17	-RepRes 2	WF repowered Option 1	2021-03-01	2046-03-01	2020	89369.7	28.2	40,714	27.3	9.7%	66.8	39.5
	#18	-RepRes 3	WF repowered Option 2	2021-03-01	2046-03-01	2020	80171.9	28.7	34,268	27.7	9.5%	66.8	39.2

DNV·GL 20 DNV GL ©

Agenda

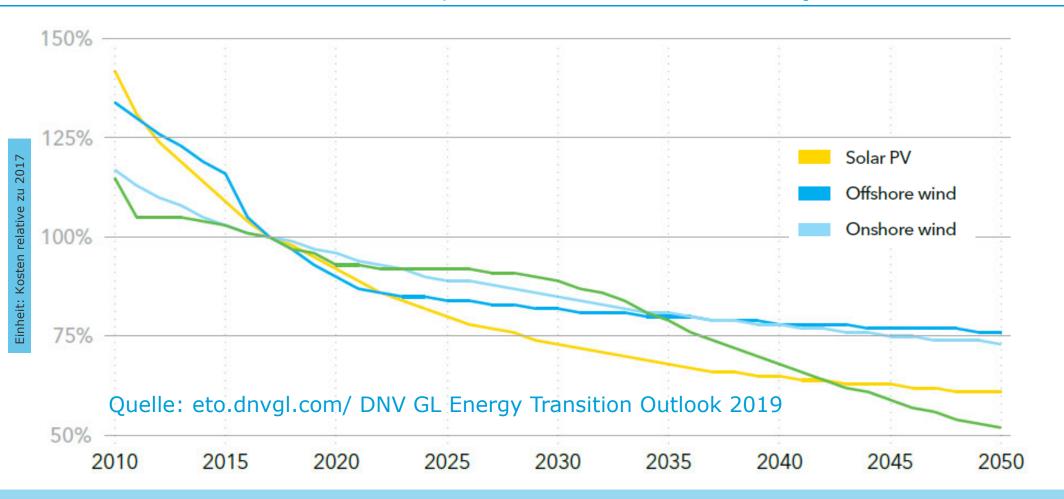
01

Vorstellung DNV GL + DNV GL Energy

02

Hintergrund

03

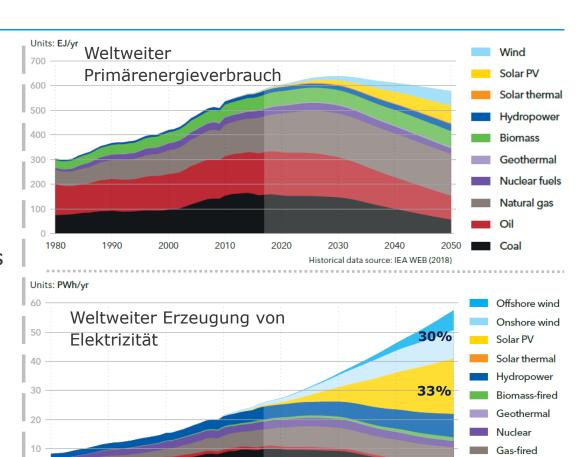

Wind Strategies Management (WSM)

04

Ausblick

Investitionskosten für Solar PV, Wind On/Offshore in Europa

22 DNV GL © DNV-GL


Ausblick

Laufzeitanalyse und Weiterbetrieb

- DNV GL geht davon aus, dass bis 2050 ein hoher Anteil des weltweiten Energiebedarfs durch erneuerbare Energien gedeckt wird, da deren spezifischen Kosten in naher Zukunft geringer sein werden als bei konventionellen Energieträgern.
- Die Windtechnologie steht aus unserer Sicht weltweit vor einem massiven Wachstum, dass - sofern die Rahmenbedingungen stimmen selbsttragend und zunehmend weniger von Fördermechanismen geprägt sein wird.
- Laufzeitverlängerte WEA stellen in Deutschland hald einen Startschuss für diese Entwicklung dar.

Quelle: eto.dnvgl.com/

DNV GL Energy Transition Outlook 2019

2030

Historical data source: IEA WEB (2018), IRENA (2019)

2040

Oil-fired

Coal-fired

DNV-GL 23 DNV GL ©

1980

1990

2000

2010

WSM - Feedback?

Wolfgang Winkler

Wolfgang.winkler@dnvgl.com

+49 172 408 50 29

www.dnvgl.com

SAFER, SMARTER, GREENER

The trademarks DNV GL®, DNV®, the Horizon Graphic and Det Norske Veritas® are the properties of companies in the Det Norske Veritas group. All rights reserved.

24 DNV GL © DNV-GL