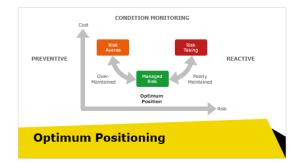
bachmann.

Knowledge Based Operational Excellence

David Futter, Bachmann Monitoring Department Head, Condition Monitoring Consultancy Approved Training Coordinator


Knowledge Based Operational Excellence

Optimised Asset management

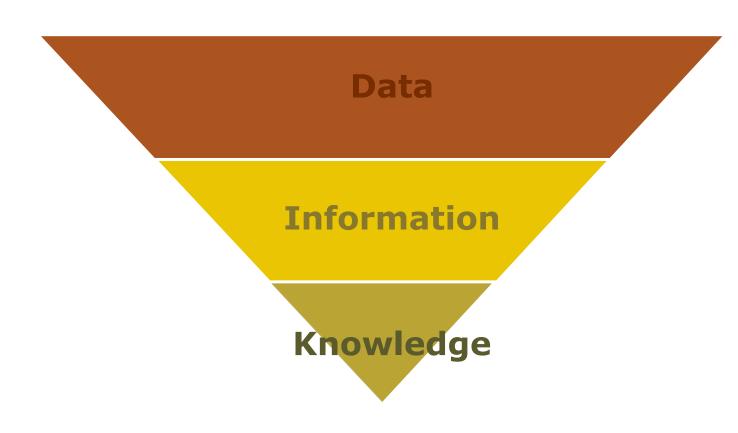
Prologue

Discussion points today

- Condition Monitoring (CM) Systems can bring huge benefits, but only when applied in the correct context.
- Choice of CM Systems is only a small part of the wider topic of Asset Mangement
- Knowledge availability greatly influences operational decisions

Information flows

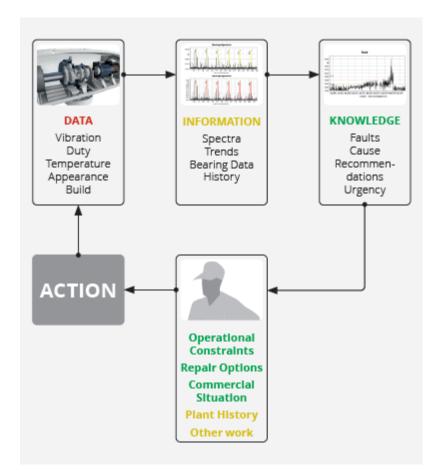
- Each system delivers knowledge to the asset owner
- Externalities also influence the asset (eg weather, demand, prices, resource availability)
- Using this knowledge effectively is the key to Operational Excellence
- Integrating such systems simplifies the process



- Knowledge Based Operational Excellence
 - Data, Information and Knowledge
 - Approach
- Some Examples
 - CMS
 - SHM
 - Data
- Implementation
 - Hints and overcoming barriers
 - Bachmann Supporting Asset Management
- Conclusions

Knowledge Based Maintenance

Data \rightarrow Information \rightarrow Knowledge


Example - Vibration Monitoring

- Vibration of bearings; speed marker; process parameters
- Converted into signals by sensors and fed to CMS hardware
- Order related data; CVs trends; history; machine build
- Analysed daily for long term trends
- Current state of machine; cause of any anomalies; recommendations
- Transmitted via weblog e-mails; stored in logs; work orders; reports

Approach

Knowledge Based Maintenance

- Data is recorded to from the machines' operation
- Information is created by putting the data into context. Multiple sources of information are collated
- Knowledge is generated from the information and experience
- Actions are taken at the optimum opportunity to reduce costs and increase availability
- Reviewing the results of the process enables continuous improvement

Asset Management

Additional Information to bring in

- Are there safety or integrity implications?
- Resource availability
- External factors Weather, demand, pricing, supply chain
- Mitigations reduced load, changed operation
- Cost benefits extra income/avoided losses as a result of an intervention

Operational Excellence requires:

- Prioritisation
- Risk management
- Capitalising on opportunities

Knowledge Based Maintenance

Maintenance strategies

Lots of names:

- Run to Failure
- Maintenance Optimisation
- Breakdown Maintenance
- Preventive Maintenance
- Reactive Maintenance
- Predictive Maintenance
- Time-based Maintenance
- Total Productive Maintenance
- Scheduled Maintenance
- Firefighting
- Reliability Centred Maintenance
- On Condition Maintenance

But only three strategies:

Reactive Maintenance (Run to Failure)

Run the machine until it fails – high repair costs, poor availability

Predictive Maintenance (Condition Based)

Monitoring of selected parameters to assess the condition of the machine so that maintenance can be planned.

 Preventive Maintenance (Time- or Duty-based)
 Run the plant for a pre-determined period then overhaul

Knowledge Based (Smart) Maintenance

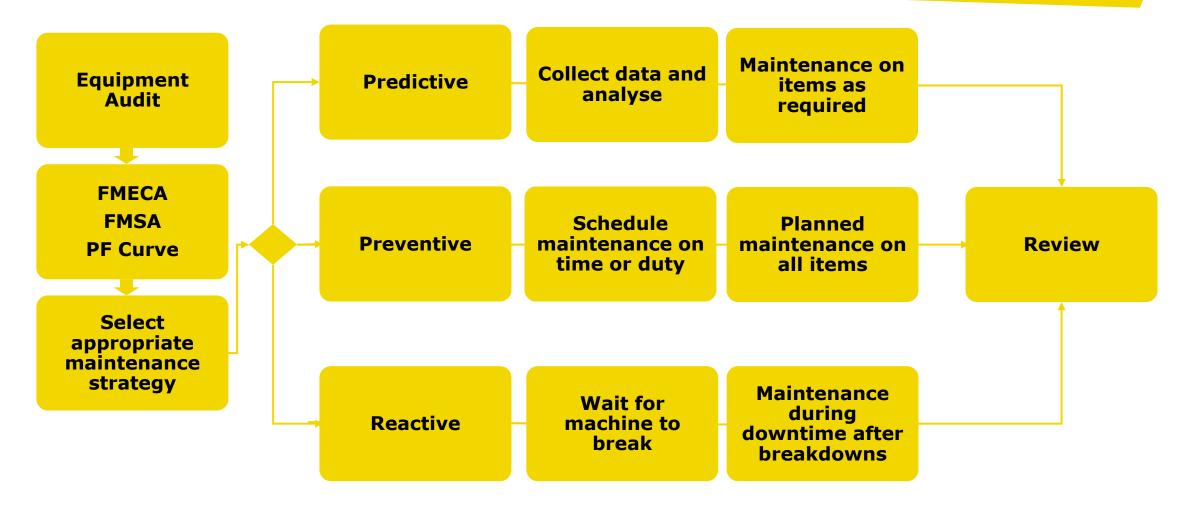
Choose your strategy

Reactive Maintenance	Preventive Maintenance	Predictive Maintenance	Smart Maintenance	
 Repair item on failure 	 Choose repair time based on interval 	 Requires condition indication 	 Strategy based on plant item 	
 Unplanned downtime Consequential 	 Good parts replaced Maintenance induced problems Some parts will fail early - CM also needed for critical items Can be augmented with equivalent operating hours 	 Failure indicator must give sufficient lead time 	Reduces unnecessary workReduces unplanned	
 damage Suitable for consumables in non critical plant 		 Probability of detection must be high Plant must have opportunities for maintenance 	 unavailability Supports planning for major items Inputs from Big Data and AI mothods to improve 	
			methods to improve prognostics	

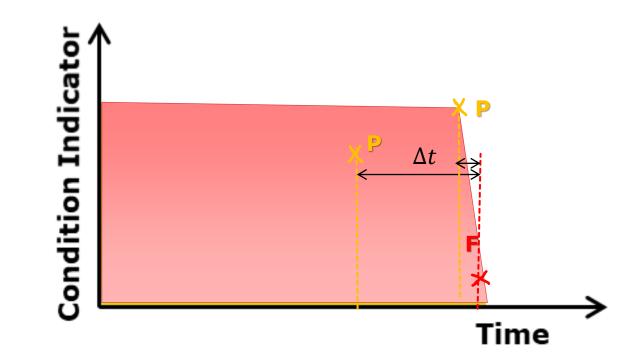
 (\triangle)

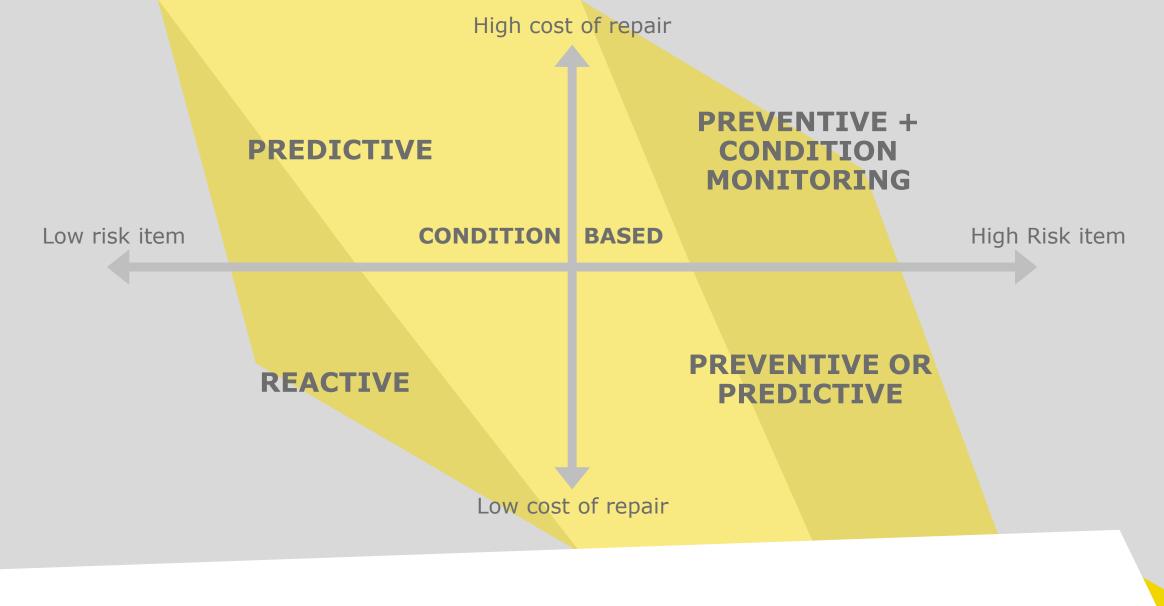
Asset Management

Interface with maintenance strategy


- Equipment inventory which assets need to be maintained
- Identify the failures which cause losses to the plant FMECA
- Identify the faults which lead to these failures
- Identify the symptoms which can identify these faults FMSA
- Identify the equipment which can measure these symptoms
- Cost-benefit analysis to decide whether it is worthwhile
- ISO17359 describes the process
- ISO13373, ISO13379 provide further information

Knowledge Based Maintenance

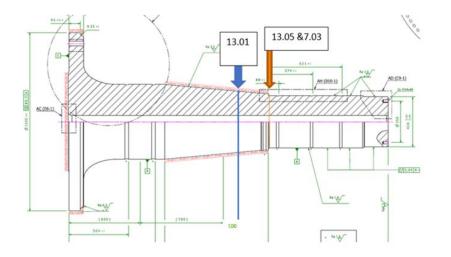

Choose your Strategy



Equipment Audit

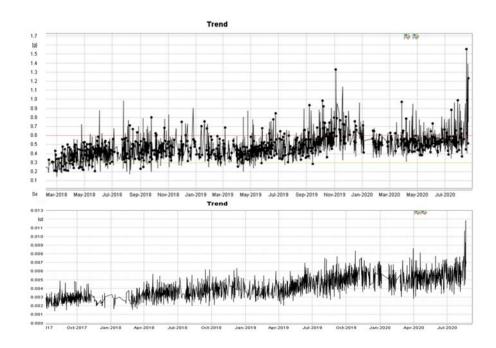
Identify everything – and how it can fail – and how you can spot that coming.

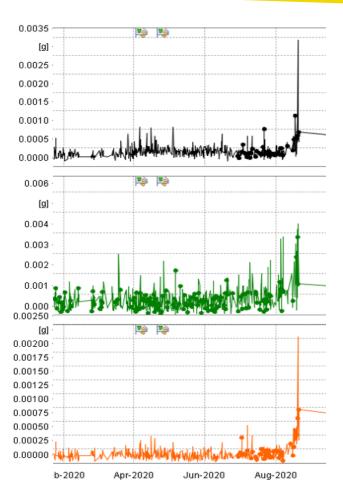
- Machine 1
 - Component 1
 - Failure Mode 1
 - Failure Mode 2
 - Component 2
 - Failure Mode 1
 - Failure Mode 2
 - Component 3
 - Failure Mode 1
 - Failure Mode 2
 - Failure Mode 3
- Machine 2
 - etc



Cost vs Criticality

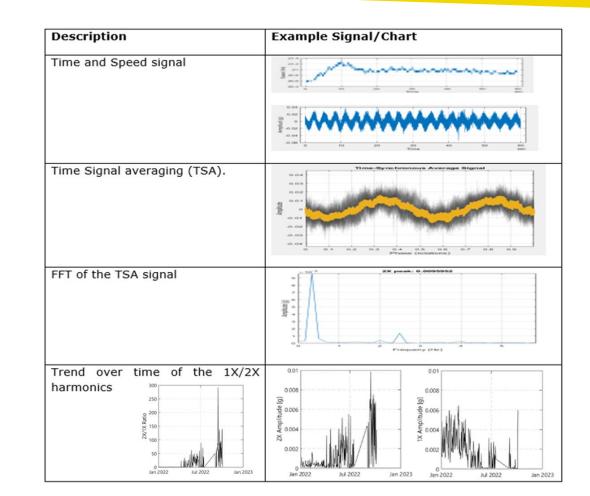
Vibration Analysis – Main Shaft Crack


- Machine with cracked main shaft
- Examples on selected examples of similar turbines
- Asset management requirements:
 - Protection against complete failure
 - Identification of at-risk turbines
 - Root cause analysis



Vibration Analysis – Main Shaft Crack

- Protection against failure
- Existing analysis can be used
- Little forewarning without further processing



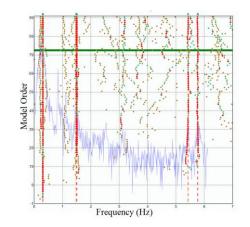
Vibration Analysis - Main Shaft Crack

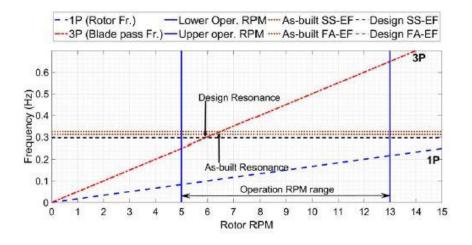
- Identification of at-risk turbines
 - Post processing
 - Identifies a parameter to identify at-risk turbines
 - Results can be used to prioritise inspecions and replacement
 - List of turbines can help with RCA

RCA

- Idenitifed turbines all had degraded elastomers in the torque arms
- Not clear if correlation or association

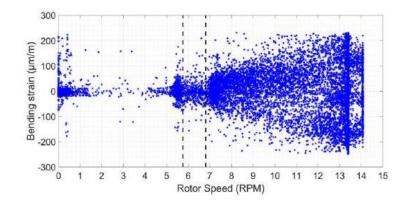
Structural Health Monitoring



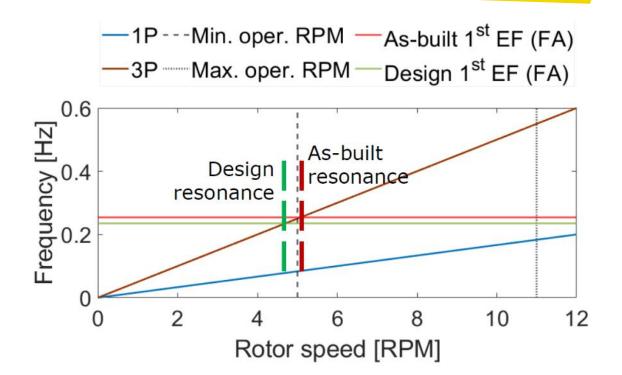

- Structural Health Monitoring is a requirement for some offshore turbines
- The data is used to verify the structural integrity.
- What else can we learn from the data?
- Is the structure performing as expected
- Which conditions use up the most turbine life (fatigue cycles, ultimate loads etc.)
- How extreme are specific events

Use SHM data for O&M and asset management

Structural Health Data allows:

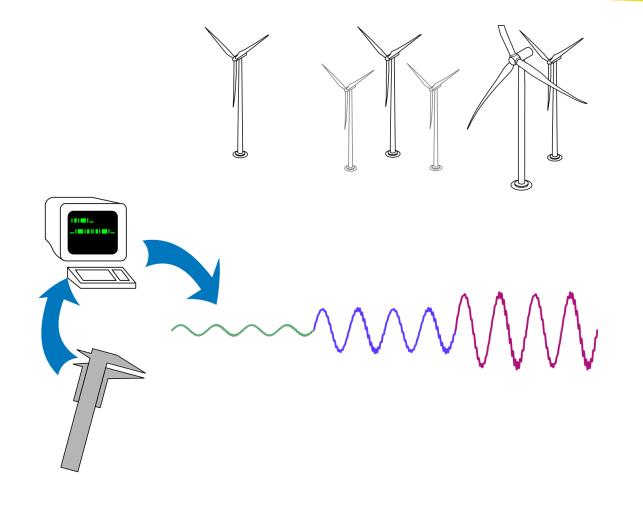

- Design verification
- Review of extreme loads
- Fatigue analysis
- Identification of extreme events
- Eigenfrequency monitoring

Information can be used for:


- Extending of inspection intervals
- Adjusting operating parameters to optimize structural response
- Early detection of problems
- Basis for lifetime extension (LTE)

Tower Eigenfrequency overlaps operating ranges

- Small underestimate of tower stiffness
- Resonance now overlaps
 Blade Pass Frequency
- Asset management question?


Extend life of the tower Or Maintain power output

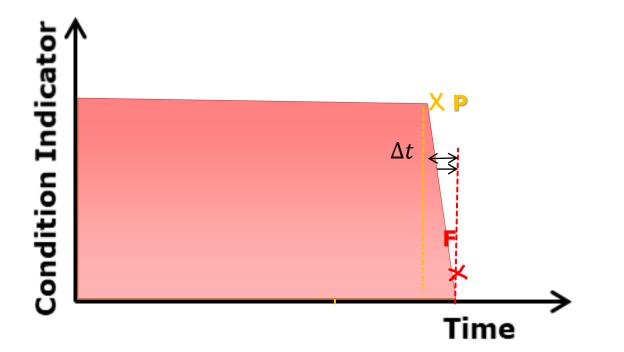
SHM for Lifetime extension

SHM data + SCADA Data + Mathematical Model (digital twin) = More accurate assessment

of remaining useful Life

SHM Exemplary results

Remaining useful life MD77


Remaining useful life NM72c

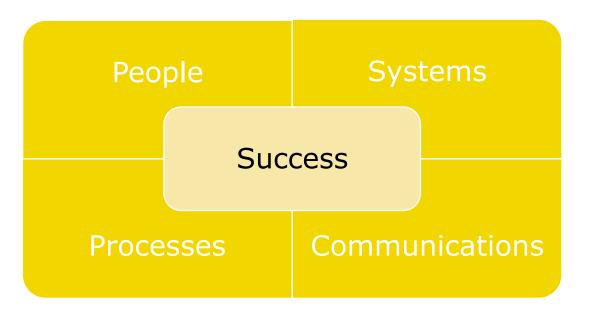
Component	Before Measurement	After Measurement	Component	Before Measurement	After Measurement
Blade root	6.9	11.9	Blade root	0.0	6.1
Blade bearing bolts	7.3	(7.9)	Blade bearing bolts	2.6	(2.8)
Hub	7.3	11.3	Hub	3.2	3.8
Rotor shaft	18.8	>20	Rotor shaft	15.5	>20
Main frame	>20	>20	Main frame	0.0	11.1
aw bearing bolts	8.0	>20	Yaw bearing bolts	8.2	18.1
Fower & foundation	0.0	>20	Tower & foundation	2.8	10.4
other	>20	>20	other	>20	>20

Data Analysis

- Operational data used for driving the turbine, rather than for condition monitoring.
- Why?
- Lead Time To Failure often quite short
- How do we change this?
- Use data correlation, to generate an expected value for each parameter under any given condition.

This extends the LTTF

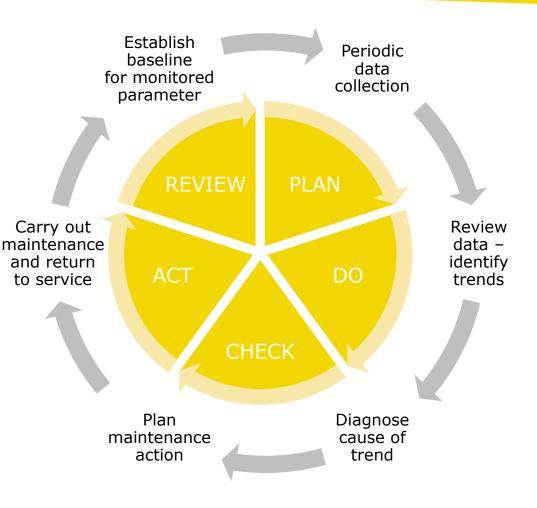
Bearing Temperature analysis


Basic example:

- Main Bearing RS and GS temperatures
- Temperature difference is more sensitive and repeatable than individual temperatures
- Can be expanded into multi dimensional analysis
- AI methods are laregly based on this principle.

Changing work practices

- Stepwise implementation
- Apply first on troublesome plant items
- Demonstrate the usefulness
- Gradually expand to other items as confidence increases
- Take the team with you
- Consider the elements required for success
 - People
 - Systems
 - Processes
 - Communication


Barriers

- People Wary of change: Stepwise approach proves the principle
- People Training: Certified training in condition monitoring technologies provides confidence
- People Job Security: Show that analysing data is just as valid as re-building a machine
- Processes: Clear process for raising alerts and providing feedback
- Processes: Clear roles and responsibilities, and team organisation
- Systems: Monitoring system should be more reliable than the machine it is monitoring
- Systems: Integration provides familiarity
- Communications: Simple unified tool for reporting all maintenance related issues
- BINDT Approved training in Vibration Analysis to ISO18436-2 Categories 1,2 or 3

Review the Process

Check you are doing it right, and continuously improve

- Start slowly
- Step-by-step rollout
- Test with single components
- Track results
- Optimize
- Check the interface with other asset management activities
- Modify with changes to knowledge

Data to Knowledge in Practice

Information

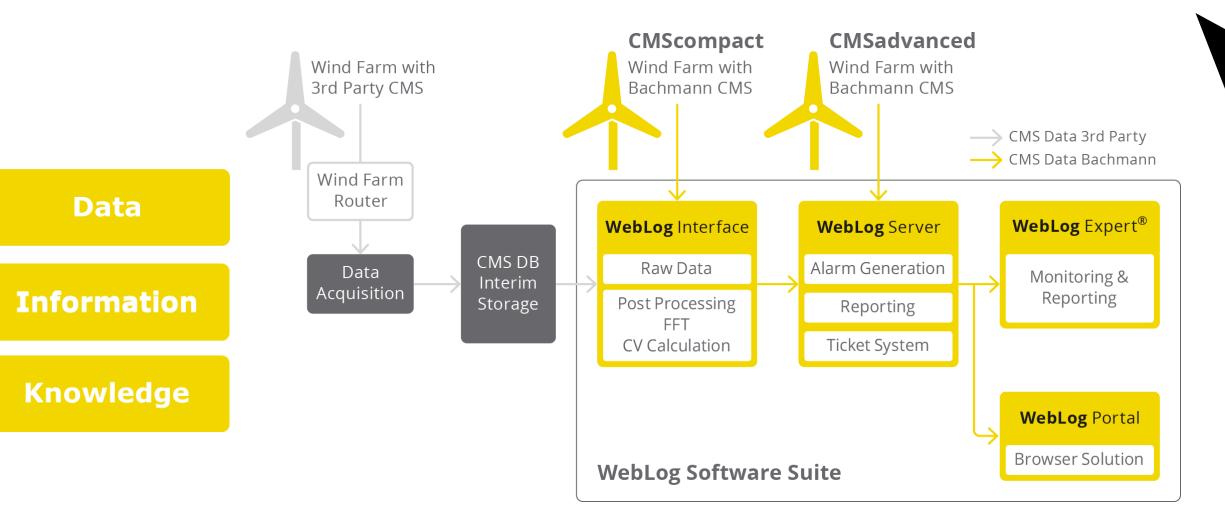
Knowledge

Turbine

- Unbalance detection and monitoring
- SCADA data integration and visualization

Drive Train

- Basic condition monitoring for retrofits & replacements
- Advanced condition monitoring for OEM installations
- Integrated condition monitoring for WTG equipped with Bachmann controller
- Installation and remote monitoring services
- Condition Monitoring with 3rd party CMS


Tower and substructure

- SHM (Structural Health Monitoring)
- LTE (Lifetime Extension)

Rotor blade

- Blade load acquisition
- Ice detection
- Blade structure monitoring

Bachmann Product Landscape

Condition Monitoring in Practice

Drivetrain sensors

Acceleration sensors

Structural sensors

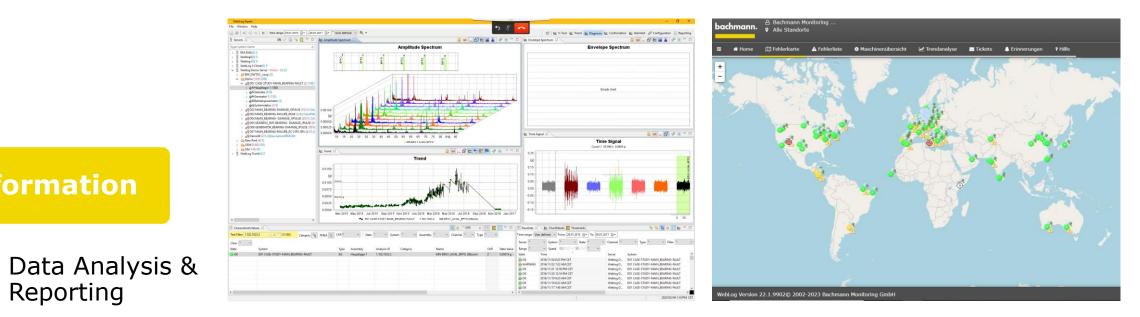
Data

 Data Acquisition Offline & Online CMS

Cantilever sensors

Tower or blade

Knowledge Based Maintenance Optimisation

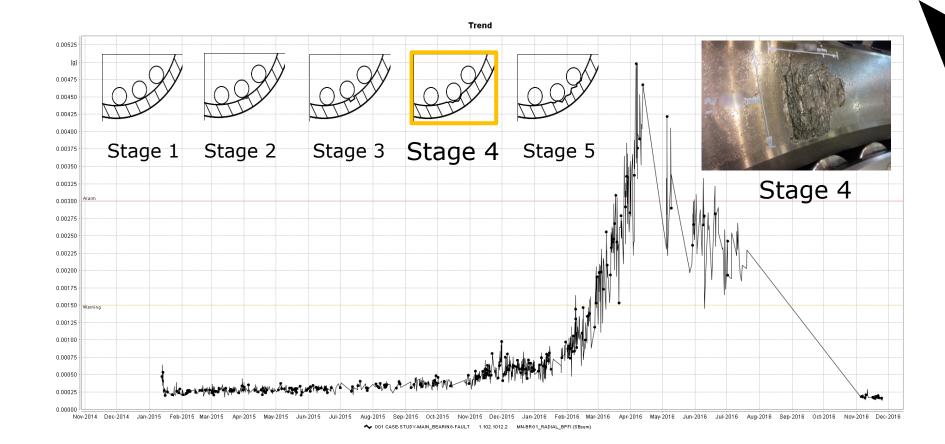

 (\triangle)

Measurement Chain

Condition Monitoring in Practice

Information

Reporting



WebLog[®] Expert

WebLog[®] Customer Portal

Data Acquisition and Analysis

Detect failures early and estimate a prognosis

Information

 Data Analysis & Reporting

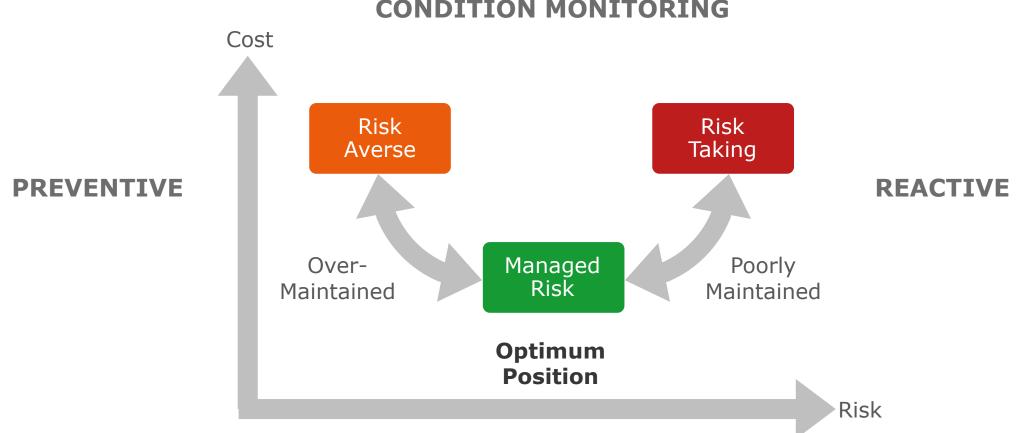
Knowledge Capture

Condition Monitoring in Practice

https://weblog-dev1.my-sen.de/trunk-webapp/ttedit.jsp?tt_id=92					bachmann.		
Ticket: turbine M437-	Generator 1-GEN1-A_PE	AK (8.3.0.2): peak	gen				
Created: 2014/10/01 02:27 PM	1 by Trunk-Dev1 Admin						
Туре:	Category:	State:	Priority:	Access:		RM Event Report	
Alarm reported	Characteristic Value	Closed	High •	External		System Name : Fault Location:	XYZ-1-CMS-XXX
Cancel					Ok	Characteristic Value: Report Date:	Gearbox HSS-GS_ABC HI 2014/06/02
Reminder: 0							Trer
						0.9 M	
Ficket Thread						0.7	
						0.4	
🧏 MID-92-114 2014/10/01 02:29 PM, by Trunk-Dev1 Admin (E-Mail) [242byte]				3	0.2		
	-weblog@localhost.localdomain>					0.0 0000000000000000000000000000000000	1 21-May 21
To: "Steffen, Mirko albus@localhos	(reporting)" <m.steffen@bachmann.i it.localdomain</m.steffen@bachmann.i 	info>, "Oertel, Ulrich" <u.oe< td=""><td>rtel@bachmann.info>, a</td><td>bus@localhost.localdomain,</td><td></td><td>~</td><td>NZ-CHE REALISED? - F LOS SPACE</td></u.oe<>	rtel@bachmann.info>, a	bus@localhost.localdomain,		~	NZ-CHE REALISED? - F LOS SPACE
Subject: turbine M437	-Generator 1-GEN1-A_PEAK (8.3.0	0.2): peak gen [MID-92-1	14]			0.70 m	Envelope S
Text: Ticket generie						360 0.00 0.00 0.46 0.40 0.35	
Attachment: % part_1.txt						0.30	
	11:45 AM, by Steffen, Mirko (Onlir	ne only)					South like
From: To:						0 50 100 150 250 25	0 300 350 400 450 5 0 000-00 450 100
	-Generator 1-GEN1-A_PEAK (8.3.0	0.2): peak gen - closed [M	1ID-92-350]			Finding	
Text:						Increasing trend of the inner	race roll over frequenc
- closed						with harmonics and sideband	
Message						Recommendation	
ledium*:	Access*:				.€	 check the condition (temper check the oil for increased p assessment/endoscopy of the 	particle concentration
Select please •	External	\square				Priority	
From:						Risk of progression: We re carried out by qualified person	
"DAFU" <wldev1.trunk@weblog< td=""><td>-dev1.my-sen.de></td><td></td><td></td><td></td><td></td><td>the monitoring centre.</td><td>men recover regards</td></wldev1.trunk@weblog<>	-dev1.my-sen.de>					the monitoring centre.	men recover regards
To:							

Remote Monitoring Bachmann Monitoring GmbH Fritz Bolland Str. 7 07407 Rudolstadt Tel.: +49 (0) 3672 3186 - 100 Mail: m.mustermann@bachmann.infoo 92000Y R30234J _BPFI (7.120.1742.2) 8 1112 -CAVE- 300 00 550 200 750 800 850 845 0.50 v of the high speed shaft bearing ABC HR302343 val of the high speed shaft run frequency.

Max Mustermann

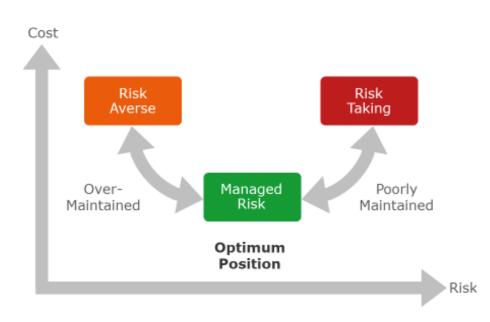

- of the high speed shaft bearing
 - aring, especially the inner race

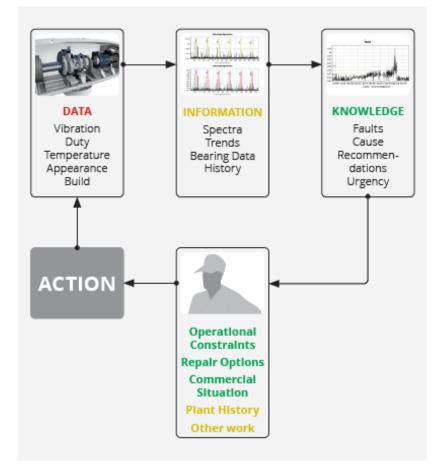
ant is operated only after an inspection has been ng the result of the inspection should be sent to

Knowledge

1/1

Optimum Positioning


CONDITION MONITORING


 \bigcirc

Conclusions

Knowledge Based Operational Excellence

- Interfaces with many aspects of Asset Management
- Optimises Maintenance Strategy
- Acting on knowledge and learning from the process is key to operational excellence

bachmann.