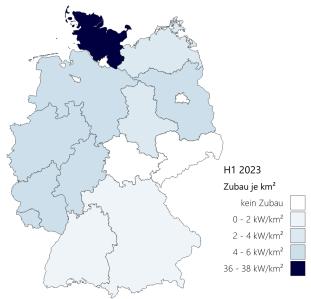

Dr.-Ing. Dennis Kruse 31. Windenergietage | Forum 9 | 9. November 2023

WINDENERGIE AN LAND

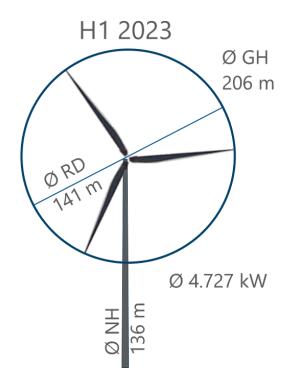
ZUBAU UND GESAMTBESTAND - HALBJAHR 2023


		Leistung	Anzahl
0.0	Brutto-Zubau	1.565 MW	331 WEA
Entwicklung H1 2023	davon Repowering	396 MW	80 WEA
ıtwi	Stilllegung	239 MW	198 WEA
	Netto-Zubau	1.325 MW	133 WEA
Kumuliert 30.06.2023	Kumulierter Bestand	59.343 MW	28.517 WEA

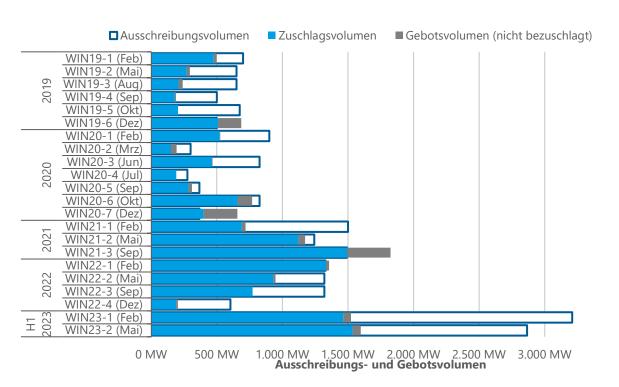
- Zubau erholt sich weiter
- noch immer deutlich unter Rekordjahren
- weit unter politischem Ziel von ca. 10 GW jährlich

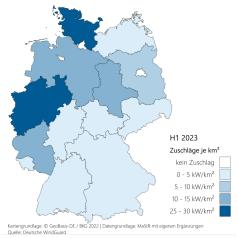
ZUBAU NACH BUNDESLÄNDERN

H1 2023	Br	utto-Zubau	
ರು E Bundesland ಜ	Zubau Leistung	Zubau Anzahl	Anteil*
1 Schleswig-Holstein	597 MW	125 WEA	38%
2 Niedersachsen	267 MW	52 WEA	17%
3 Nordrhein-Westfalen	204 MW	45 WEA	13%
4 Brandenburg	148 MW	28 WEA	9%
5 Rheinland-Pfalz	90 MW	22 WEA	6%
6 Hessen	89 MW	19 WEA	6%
7 Sachsen-Anhalt	58 MW	11 WEA	4%
8 Mecklenburg-Vorpommern	49 MW	12 WEA	3%
9 Baden-Württemberg	31 MW	8 WEA	2%
10 Bayern	18 MW	5 WEA	1%
11 Saarland	14 MW	4 WEA	1%
Thüringen	0 MW	0 WEA	0%
Berlin	0 MW	0 WEA	0%
Bremen	0 MW	0 WEA	0%
Hamburg	0 MW	0 WEA	0%
Sachsen	0 MW	0 WEA	0%
Deutschland	1.565 MW	331 WEA	


Kartengrundlage: © GeoBasis-DE / BKG 2022 | Datengrundlage: MaStR mit eigenen Ergänzungen Quelle: Deutsche WindGuard

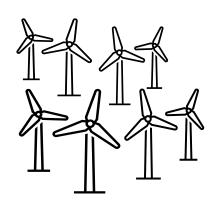
^{*} Anteil des Brutto-Leistungszubaus je Bundesland am deutschlandweiten Brutto-Leistungszubau

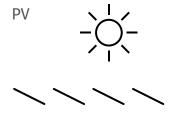

TECHNOLOGIE


Durchschnittliche Konfiguration	Zubau H1 2023	Veränderung zum Vorjahr
Anlagenleistung	4.727 kW	+8%
Rotordurchmesser	141 m	+3%
Nabenhöhe	136 m	-1%
Gesamthöhe	206 m	+0%

ERGEBNISSE DER AUSSCHREIBUNGEN

	Jahr	Realisierte Menge	Realisierungs- quote
-s	2019	1.738 MW	94%
sbung	2020	2.411 MW	90%
rei	2021	1.823 MW	55%
 4ussch j	2022	138 MW	4%
Ā	H1 2023	15 MW	1%


WINDENERGIE-HYBRIDE


WAS IST EIN WINDENERGIE-HYBRID?

Windenergie

Erweiterung eines Windparks um eine weitere Technologie

Batterie-Speicher

CHANCEN DURCH WINDENERGIE-HYBRIDEN

WAS BRINGEN HYBRID-PROJEKTE?

- Bessere Nutzung von Netzanschlüssen durch Kombination von Windenergie- und PV-Anlagen mit unterschiedlichen Einspeiseprofilen
- Bessere Nutzung von Flächen durch Kombination aus Windenergie- und PV-Anlagen
- Bessere Nutzung von EE-Strom durch Kombination aus Windenergieanlagen und Speichertechnologien

BESSERE NUTZUNG VON POTENZIALEN!

• Bessere Systemverträglichkeit bei zunehmenden EE-Anteil im Netz

BEISPIELE - WINDRAD MIT PUMPSPEICHER

Projekt	Max Bögl – Windrad mit Pumpspeicher
Ort	Gaildorf nahe Stuttgart
Inbetriebnahme	2017
Windenergieanlage	GE 3.4-137
Speicherkapazität	70 MWh

BEISPIELE - WINDPARK MIT WASSERSTOFF

Projekt	Salzgitter AG, Avacon, Linde – Windwasserstoff Salzgitter
Ort	Salzgitter (Niedersachsen)
Inbetriebnahme	2020
Windenergieanlage	7 x Vestas V136-4.2MW
Produktionskapazität H ₂	400 Nm ³ H ₂ /h (PEM) 200 Nm ³ H ₂ /h (HTE)
Leistung Elektrolyseur	2 MW (PEM) 0,7 MW (HTE)

BEISPIELE - WINDPARK MIT NAHWÄRME

Projekt	Enertrag – Windpark mit Nahwärme
Ort	Nechlin (Brandenburg)
Inbetriebnahme	2020
Windenergieanlage	Park mit 17 WEA
Speicherkapazität	38 MWh
Leistung Durchlauferhitzer	2 MW

BEISPIELE - VOLLHYBRID-KRAFTWERK

Projekt	Vattenfall – "Haringvliet"
Ort	Niederlande
Inbetriebnahme	2022
Windenergieanlage	PV (38 MW), Windpark (22 MW)
Speicherkapazität	12 MWh

INNOVATIONSAUSSCHREIBUNGEN

Ausschreibungsformat mit Fokus auf Anlagenkombinationen

- Durchführung seit 2020, zunächst auch für Einzelanlagen
- Seit 2021 nur noch für Anlagenkombinationen
- Windenergie- oder Photovoltaikanlage muss beteiligt sein

Wettbewerb

Sowohl unterzeichnete als auch Ausschreibungsrunden mit Wettbewerb

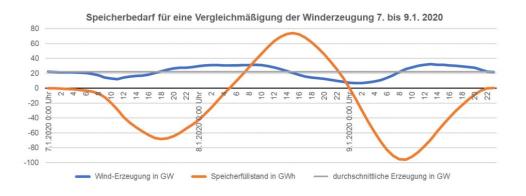
Ausschreibungsvolumen

- 2020: 650 MW
- 2021: 500 MW
- 2022: ca. 800 MW (700 MW + 2021 nicht vergebene Leistung)
- 2023: 800 MW
- 2024 2028 jährlich 50 MW mehr als im Vorjahr

Zuschläge

- Zuschläge vorrangig an Anlagenkombinationen aus Solarer Strahlungsenergie und Speichern
- Ausnahme: Einzelanlagen in 2020 sowie eine Windenergie/Speicher Kombination in 2023

SPEICHER IN DEUTSCHLAND


BERICHT BUNDESNETZAGENTUR STROMSPEICHER

Aktuelle Potenziale begrenzt

- Pump- und Batteriespeicher können die Stromversorgung lediglich für weniger als eine halbe Stunde gewährlsieten
- Batteriespeicher lediglich für weniger als eine Minute
- Pumpspeicher haben Kapazität von etwa 6 GW
- Batteriespeicher haben Kapazität von unter 1 GW

Speicherbedarf für Vergleichmäßigung der Winderzeugung

 Um den deutschen Strombedarf an einem durchschnittlichen Wintertag auch nur für einen halben Tag aus Stromspeichern zu decken, müsste man Speicherkapazitäten in der Größenordnung von 180 GW Leistung und 720 GWh Kapazität errichten.

FAZIT

VORTEILE VON HYBRIDPROJEKTEN

- Bessere Nutzung von Flächen, Netzanschlüssen und EE-Strom
- Bessere Systemverträglichkeit bei zunehmenden EE-Anteil im Netz

NOCH OFFENE FRAGEN BEZÜGLICH DES REGULATORISCHEN RAHMENS

- Stromspeicher und Netzentgelte: Verbraucher, Erzeuger oder eben Speicher?
- Ähnliche Herausforderungen bei Wärmenutzung aus EE

WINDGUARD

Dr.-Ing. **Dennis Kruse** Geschäftsführer

DANKE.

dennis.kruse@windguard.de
+49 4451 9515 287

Deutsche WindGuard GmbH Oldenburger Str. 65 A 26316 Varel | Germany

www.windguard.de