

31. Windenergietage - BWE Forum 28

EE-Netzintegration – Hürden und Herausforderungen der Energiewende

09. November 2023, Potsdam

Kevin Hamann, Fachreferent Netzintegration

EE-Netzintegration – Hürden und Herausforderungen

Agenda

- I. Einleitung
 - EEG-Ausbaupfad
- II. (regionale) Herausforderung: Netzanschluss
 - Netzkapazitäten und Prozesse
- III. Herausforderung: Netzbetrieb
 - Systemstabilität und Redispatch
- IV. Ansätze ,Beschleunigung von Netzanschlüssen'
 - BEE-Studie "Gemeinsame Nutzung von Netzverknüpfungspunkten"
 - Redispatch-Vorbehalt
- V. Fazit

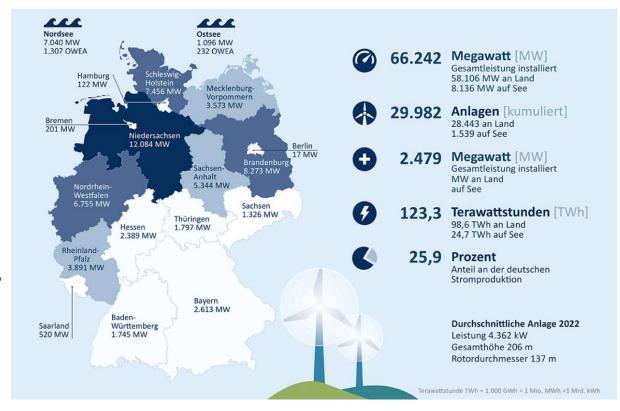
Ausbaupfad am Beispiel ,Wind onshore' (EEG 2023)

	Installierte Leistung in GW	Benötigter Zubau in GW pro Jahr	Faktor*
2023	59	-	-
2024	69	9,7	4,0
2026	84	7,5	3,1
2028	99	7,5	3,1
2030	115	8	3,3
2035	157	8,4	3,5
2040	160	0,6	0,3

^{*}benötigter Zubau / durchschnittlicher Zubau der letzten 6 Jahre (inkl. 2017 – stärkstes Zubaujahr)

Ausbaupfad am Beispiel ,PV' (EEG 2023)

	Installierte Leistung in GW	Benötigter Zubau in GW pro Jahr	Faktor*
2023	71	-	-
2024	88	17	4,0
2026	128	20	4,7
2028	172	22	5,1
2030	215	21,5	5,0
2035	309	18,8	4,4
2040	400	18,2	4,2


^{*}benötigter Zubau / durchschnittlicher Zubau der letzten 6 Jahre

Wind und PV sind *fluktuierende dezentrale* Erzeuger

- fluktuierend sich ändern
- dezentral verbrauchsnah

→ Strom muss vermehrt Richtung
Verbrauch (Industrie) verteilt werden,
jedoch sind die Netze "Verteiler- und
keine Übertragungsnetze"

Ausgangssituation

- Verdreifachung bis Vervierfachung der aktuellen Ausbauleistung bei PV und Wind
- Netzkapazitäten jetzt schon zum Großteil <u>überlastet</u>
 - Hohe Abregelungsvolumina → Netzentgelte, prozessualer Aufwand, Verluste
- Mecklenburg-Vorpommern und Brandenburg als Hauptproblemgebiete beim Netzanschluss
 - Wartezeiten bis zu 10 Jahren

Gründe

- Zubauzahlen → Netzkapazitäten
- Stand der Digitalisierung
- Ressourcen- und Fachkräftemangel
- "Verschlafener" Netzausbau der vergangenen Jahre

Quelle: E.DIS

Herausforderung: Netzbetrieb und -anschluss

Netzanschluss

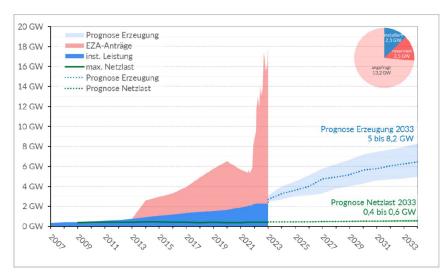
- Planung bis Inbetriebnahme
 - Netzanschlussanfrage
 - Zertifizierung
 - Technische Anforderungen

Netzbetrieb

- Systemstabilität
 - Systemdienstleistungen: Frequenzhaltung, Spannungshaltung
- Netzengpassmanagement
 - Redispatch, §14a EnWG

(regionale) Herausforderung: Netzanschluss

Installierte Leistung im Netzgebiet der E.DIS (MW)


INSTALLIERTE LEISTUNG	E.DIS	BRANDENBURG	MECKLENBURG- VORPOMMERN
WIND	7.269	4.775	2.494
SOLAR	5.649	3.613	2.036
BIO	628	395	233
WASSER	1	1	0
KWK	807	729	78
SPEICHER	139	109	30
K. FÖRDERUNG	92	82	10
SUMME	14.585	9.704	4.881

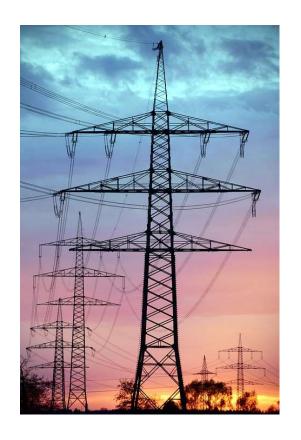
e.dis

Beantragte Leistung im Netzgebiet der E.DIS (MW)

BEANTRAGTE LEISTUNG	E.DIS	BRANDENBURG	MECKLENBURG VORPOMMERN
WIND	13.215	8.782	4.433
SOLAR	135.304	75.265	60.039
BIO	130	74	56
WASSER	0	0	0
KWK	23	15	8
SPEICHER	5.738	3.292	2.446
K. FÖRDERUNG	7	5	2
SUMME	154.417	87.433	66.984

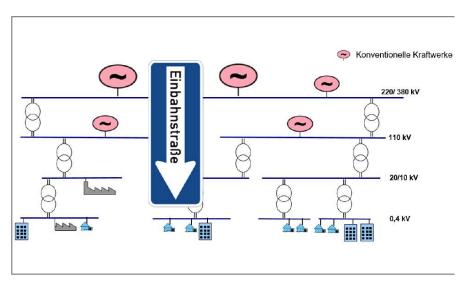
Quelle: WEMAG Netze AG

10 x mehr Anfragen als installierte Leistung am Netz

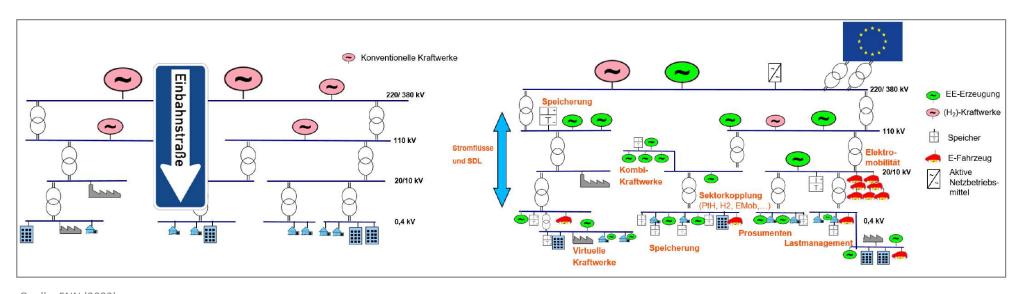

Herausforderung: Netzbetrieb und -anschluss

Netzanschluss

- Planung bis Inbetriebnahme
 - Netzanschlussanfrage
 - Zertifizierung
 - Technische Anforderungen


Netzbetrieb

- Systemstabilität
 - Systemdienstleistungen: Frequenzhaltung, Spannungshaltung
- Netzengpassmanagement
 - Redispatch, §14a EnWG


Herausforderung: Systemstabilität

Quelle: FNN (2023)

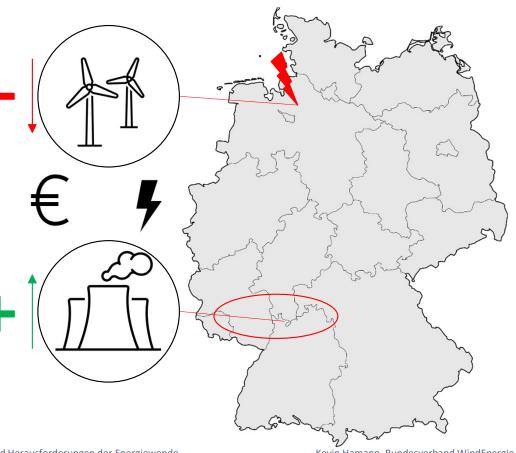
Herausforderung: Systemstabilität

Quelle: FNN (2023)

Herausforderung: Netzengpassmanagement

Redispatch (2.0)

- <u>Lokalisierung</u> eines Netzengpasses
- <u>Leistungsreduzierung</u> am Netzengpass
- <u>Hochfahren</u> eines Kraftwerks "hinter" dem Netzengpass
- <u>Finanzieller</u> und <u>bilanzieller Ausgleich</u> der Energiemengen



Herausforderung: Netzengpassmanagement

Redispatch (2.0)

- <u>Lokalisierung</u> eines Netzengpasses
- <u>Leistungsreduzierung</u> am Netzengpass
- Hochfahren eines Kraftwerks "hinter" dem Netzengpass
- <u>Finanzieller</u> und <u>bilanzieller Ausgleich</u> der Energiemengen

Herausforderung: Netzbetrieb und -anschluss

Netzanschluss

 Anwendung der Technische Anforderungen

Herausforderungen:

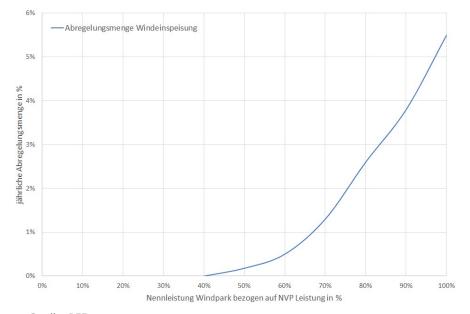
 Hoher prozessualer Aufwand für die EE-Branche und die Netzbetreiber

Netzbetrieb

 Definiert Technische Anforderungen für die Branche

Herausforderungen:

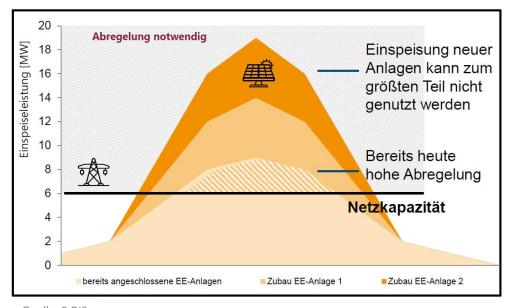
 Systemstabilität für 100% Erneuerbare Energien am Stromnetz


Ausbauzahlen erreichen, ohne dabei die Systemstabilität zu gefährden!

<u>Vorschläge</u>

BEE-Studie "Gemeinsame Nutzung von NVP"

- Basierend auf <u>Wetterdaten von 8 Jahren</u> wird das Zusammenfallen von *Windvorkommen* und *Sonneneinstrahlung* ausgewertet
- Ergebnis sind die Abregelungsmengen bei jeweiliger Auslastung des Netzverknüpfungspunktes (NVP)
- Ausgangslage: NVP ist mit einem PV-Park 100% ausgelastet, Windpark wird zugebaut
- Grafik zeigt die jährliche Abregelungsmengen in % bei einer gegebenen Nennleistung des Windparks


Quelle: BEE

<u>Vorschläge</u>

Redispatch-Vorbehalt

- Vorschlag E.DIS aus dem EW-Magazin
- "Anreiz" bzw. Synchronisierung zum <u>Anschluss</u> neuer Anlagen <u>an Trassen mit geringer</u> <u>Auslastung</u>...
- ...durch <u>Vorbehalt von finanziellen</u>
 <u>Ausgleichzahlungen</u>
- <u>Begründung:</u> Hohes PV-Anfragevolumen führt zu einer *Überlastung der VNB* und zu volkswirtschaftlichen Kosten (Netzentgelte)

Quelle: E.DIS

Fazit

Was benötigen wir JETZT?

- Lösungen zur <u>Beschleunigung von</u> <u>Netzanschlüssen</u>
 - <u>Digitalisierung und Standardisierung</u> der Prozesse
 - Verfahrensbeschleunigung des Netzausbaus
 - Vereinheitlichung der Anschlussbedingungen
 - Entbürokratisierung
 - Bestmögliche Nutzung bestehender Infrastruktur
 - ✓ <u>z.B. Gemeinsame Nutzung von</u> Netzverknüpfungspunkten

Was benötigen wir bis 2040(2045)?

- <u>Systemanforderungen</u> für 100% Erneuerbar
 - Flexibilitäten (Wasserstoff, Speicher,...)
- Diskriminierungsfreie <u>Netzentgelte</u>
- Fokus auf das Europäische Verbundnetz

Energiewende = Netzwende!

Vielen Dank für Ihre Aufmerksamkeit!

Bundesverband WindEnergie e.V. EUREF-Campus 16 10829 Berlin

T +49 (0)30 / 21 23 41 - 210 F +49 (0)30 / 21 23 41 - 410 info@wind-energie.de www.wind-energie.de