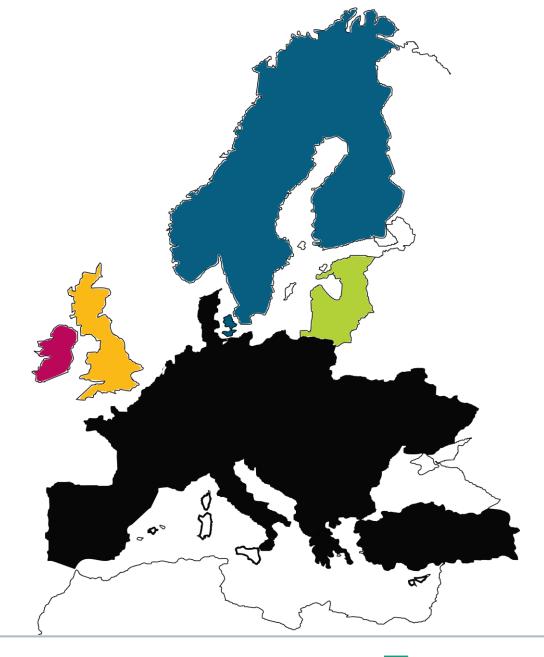


1. Motivation / Einführung

2. Netzwiederaufbau aktuell

- Bottom-Up
- Rumpfnetzstrategie

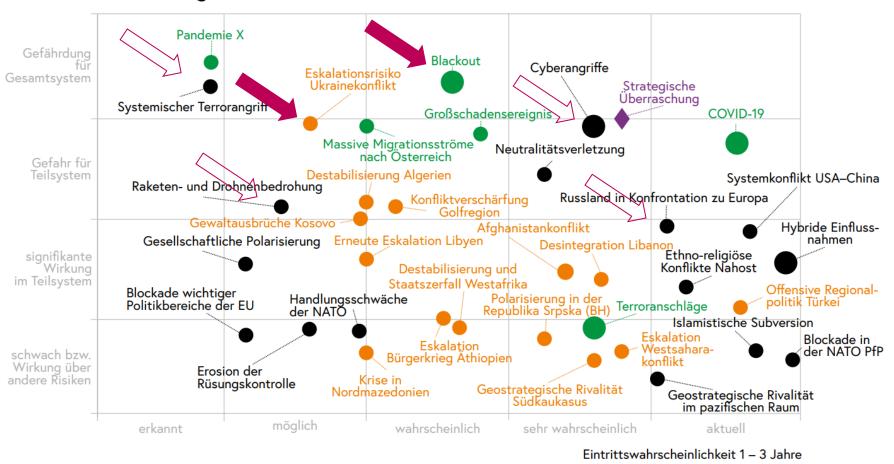

3. Aufbau von Netzinseln

- Schwarzstart
- Synchronisierung von Netzinseln

4. Herausforderung durch die Energiewende

- Außerbetriebnahme thermischer Kraftwerke
- Einsatz von dezentralen Erzeugungsanlagen beim NWA
- Steigende Anlagenzahl

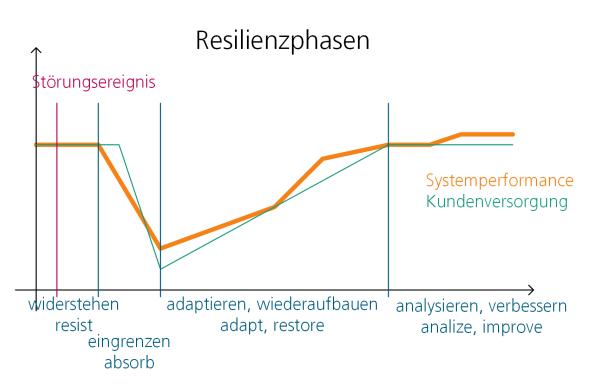
5. Zusammenfassung / Ausblick


Motivation / Einführung

Motivation / Einführung

Ein Blick von außen

Auswirkungen auf die österreichische Sicherheit 1 – 3 Jahre



Extremereignisse Regionale Konflikte Generelle Risiken

Quelle: Institut für Friedenssicherung und Konfliktmanagement im Auftrag des Bundesministerium Landesverteidigung Österreich: Sicherheitspolitische Jahresvorschau 2021

Motivation / Einführung

Resilientes elektrisches Energiesystem

Klassifizierung von Ausfallereignis	Störungsereignissen Aufbaustrategie
Lokaler oder regionaler Ausfall	Wenn notwendig: Schaden beheben, wieder zuschalten
Teilnetzbildung (System Split)	Netzinseln stabilisieren, Netzinseln synchronisieren, Verbraucher wiederversorgen
Überregionaler Ausfall mit anstehender ENTSO-E Spannung	Top-Down Wiederaufbau (Spannung sukzessive fortschalten)
Überregionaler Ausfall ohne anstehende ENTSO-E Spannung	Bottom-Up Wiederaufbau (aus eigener Kraft)

Netzwiederaufbau aktuell

© Fraunhofer IEE

Netzwiederaufbau aktuell

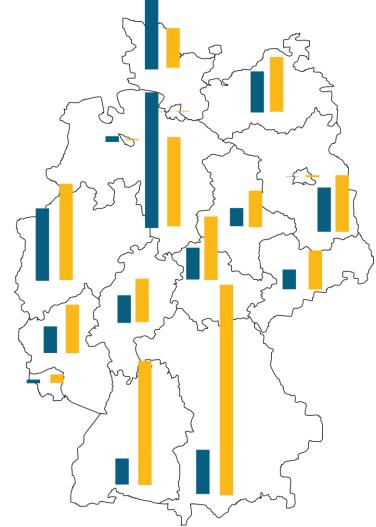
Bottom-Up

Organisation und Verantwortlichkeit

- Netzwiederaufbau (NWA) gliedert sich in unterschiedliche Phasen
- Jeder Netzbetreiber ist für sein Netzgebiet verantwortlich
- Übertragungsnetzbetreiber hat für seine Regelzone die Systemverantwortung
- Koordiniertes und abgestimmtes Handeln innerhalb des eigenen Verantwortungsbereiches
- Der Einsatz von Kraftwerken, Erzeugungsanlagen und Lasten erfolgt aus der Leitstelle des jew. Anschlussnetzbetreibers

Strommarkt außer Kraft gesetzt

Netzwiederaufbau aktuell


Rumpfnetzstrategie

Randbedingungen

- Ein Netzwiederaufbau muss im Wesentlichen mit den Kraftwerken und Erzeugungsanlagen durchgeführt werden, die auch vor dem Ausfall am Netz waren
- Europäischer Netzverbund zunächst nicht verfügbar
- Das Netz muss vor dem Aufbau segmentiert werden
- Beginn mit parallelem Aufbau von Netzinseln

Herausforderungen

- Zeitweise große nationale Transportaufgaben
- Unterschiedliche wetterabhängige Leistungsflusssituationen

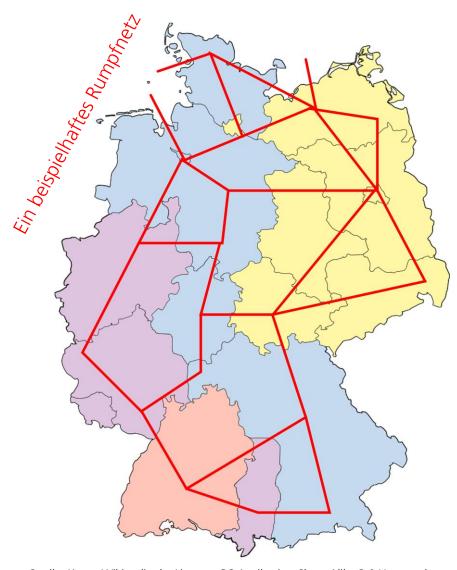
Installierte Leistung Wind (On- und offshore) Installierte Leistung PV

Quelle: Netzentwicklungsplan Strom 2037, Version 2023, Szenario 2037 B, eigene Darstellung

Netzwiederaufbau aktuell

Rumpfnetzstrategie

Randbedingungen


- Ein Netzwiederaufbau muss im Wesentlichen mit den Kraftwerken und Erzeugungsanlagen durchgeführt werden, die auch vor dem Ausfall am Netz waren
- Europäischer Netzverbund zunächst nicht verfügbar
- Das Netz muss vor dem Aufbau segmentiert werden
- Beginn mit parallelem Aufbau von Netzinseln

Herausforderungen

- Zeitweise große nationale Transportaufgaben
- Unterschiedliche wetterabhängige Leistungsflusssituationen

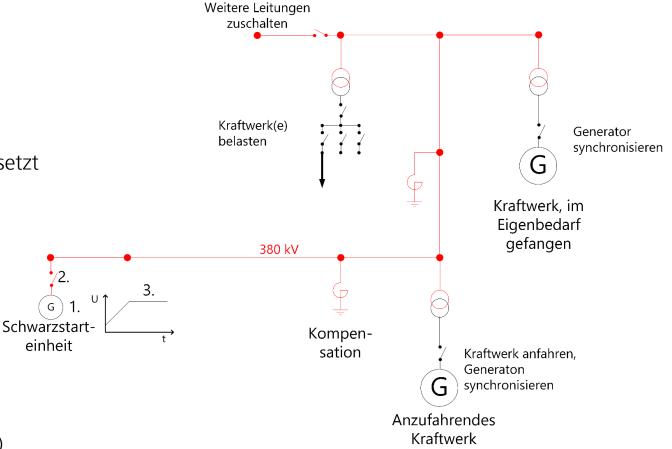
Lösungsidee: Vorgeplantes Rumpfnetz

- Schnelle Synchronisierung einzelner Netzinseln zum Rumpfnetz
- Flächendeckende Netzstruktur über Deutschland
- Schnelle Erreichbarkeit relevanter Anlagen in der Fläche
- Betriebliche Flexibilität in unterschiedlichen Situationen
- Überregionale Energietransporte möglich
- Bündelung von Ressourcen (z.B. Systemdienstleistungen)

Quelle: Karte: Wikipedia.de, License: CC Attribution-Share Alike 3.0 Unported (https://creativecommons.org/licenses/by-sa/3.0/deed.en) https://commns.wikimedia.org/wiki/File:Regelzonen_%C3%9Cbertragungsnetzbetreiber_in_Deutschland.sv Eigene Ergänzung um beispielhaftes, stillsiertes Rumpfnetz

Aufbau von Netzinseln

Aufbau von Netzinseln


Schwarzstart

Hochfahrnetz

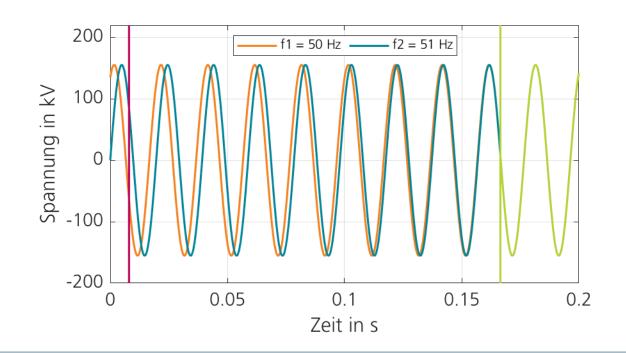
- Anfahren der Schwarzstarteinheit
- Hochfahrnetz wird rampenförmig unter Spannung gesetzt
- Systemdienstleistungen benötigt
 - Spannungsregelung (netzbildende Einheit)
 - Frequenzhaltung
 - Spannungshaltung
- Konventionelle Kraftwerke werden angefahren
- Kraftwerke werden zur Stabilisierung belastet

Weiteres Vorgehen

- Lasten versorgen (im Rahmen verfügbaren Leistung)
- Weitere Kraftwerke anfahren (Systemdienstleistungen)
- Netzinseln erweitern und mit anderen Inseln. synchronisieren

Aufbau von Netzinseln

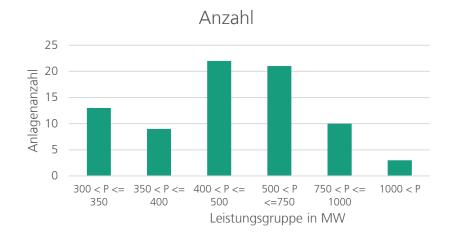
Synchronisierung von Netzinseln

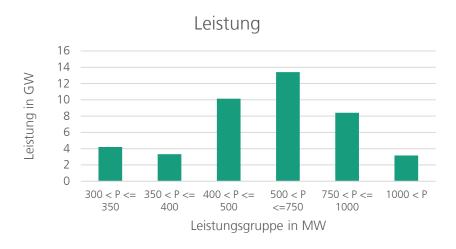

Synchronisierung muss vorgeplant werden

- Durch Null geht immer (eine Insel kollabieren lassen, dann zuschalten)
- Synchronisierung nur mit Synchronisierungsgerät möglich
- Synchronisierungskonzept erforderlich
 - Spannungsbedingung
 - Frequenzbedingung
 - Winkelbedingung
- Angleichung der Frequenz in beiden Netzinseln

Nach Synchronisierung

Gemeinsames Frequenzhaltungs- bzw.
 Leistungsregelungskonzept notwendig!

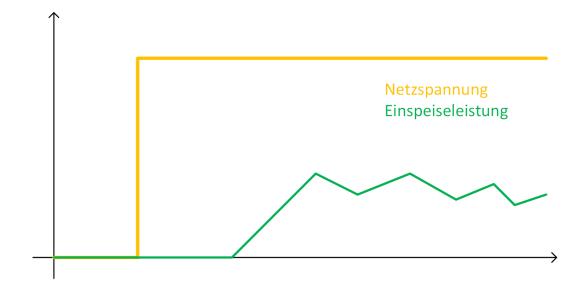

Herausforderungen durch die Energiewende



Außerbetriebnahme thermischer Kraftwerke

Einheiten ab 300 MW Nettoleistung

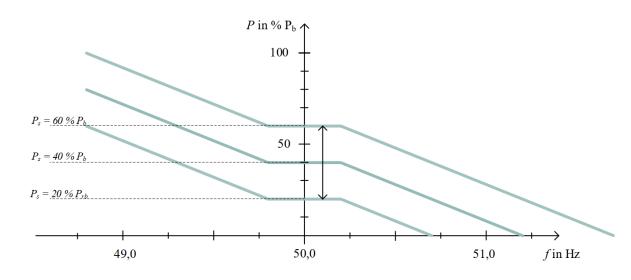
- Kohle- und Gaskraftwerke
- In der Regel Anschluss an das Übertragungsnetz
- Weniger als 80 Anlagen liefern mehr als 40 GW gesicherte Erzeugungsleistung
- Systemdienstleistungen
 - Momentanreserve
 - Spannungshaltung
 - Leistungs-/Frequenzregelung
 - Leistungsreserve
- Besetzter Leitstand, direkte Kommunikationsverbindung zum Anschlussnetzbetreiber
 - Verfügbare Leistung kann mitgeteilt werden
 - Anweisungen können entgegengenommen werden


Datengrundlage: Marktstammdatenregister, eigene Auswertung

Einsatz von dezentralen Erzeugungsanlagen beim NWA

Anlagenbetrieb / Systemdienstleistungen

- Nach Blackout ist Anlagenbetrieb nicht gesichert
- Nach Wiederzuschaltung: Leistungserhöhung (Rampe) bis verfügbare Leistung erreicht, dann MPP-Betrieb
- Eingeschränkte Bereitstellung von Systemdienstleistungen
 - Spannungsstützung, keine Spannungsregelung
 - Im leistungsoptimierten Betrieb keine Leistungsreserven verfügbar

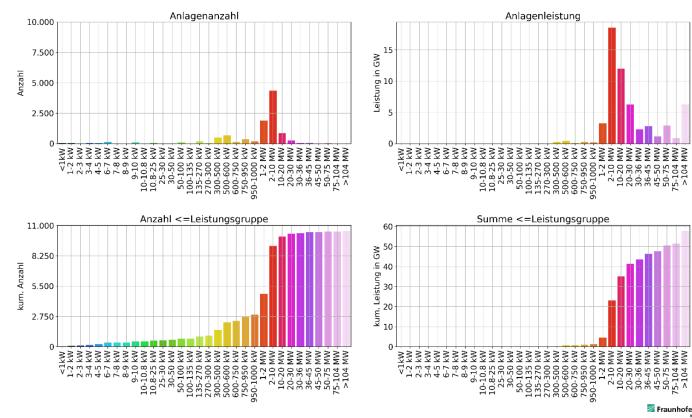


Einsatz von dezentralen Erzeugungsanlagen beim NWA

Lösungsansätze

Hier Fokus: Windparks

- Technische Verfügbarkeit im Blackoutfall erhöhen
- Funktionale Erweiterung der Netzbetreiberschnittstelle
 - Informationsbereitstellung
 - Entgegenahme von Einsatzvorgaben
- Gesonderter Netzwiederaufbaumodus, durch NB aktivierbar
 - Definiertes Anlagenverhalten bei Spannungsausfall inkl.
 Schaltzustand
 - Geänderte Parkreglereinstellungen
 - Einbindung in die Leistungs-/Frequenzregelung
 - Ggf. Einbindung in die Spannungshaltung
- Übermittlung der möglichen Einspeiseleistung ermöglichen dem Netzbetreiber die Einsatzplanung und den Anlageneinsatz
 - Aktuell
 - Prognosen

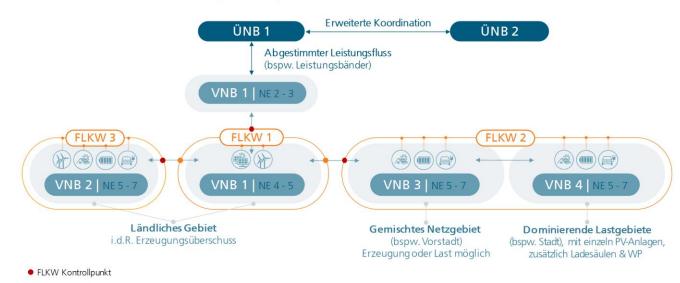


Steigende Anlagenzahl

Windenergieanlagen

- Großteil der Anlagen Anschluss an das Hoch- oder Mittelspannungsnetz
- Verlagerung der Erzeugungsleistung vom Übertragungsnetz in die Verteilnetze
- In der Regel in die Leittechnik des Netzbetreibers angebunden
- Rund 10.000 Anlagen mit installierter Gesamtleistung von rund 55 GW

Datengrundlage: Marktstammdatenregister, Analyse im Auftrag des BMWK, Veröffentlichung in Kürze



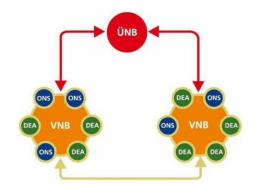
Steigende Anlagenzahl

Lösungsansätze

- Installation bzw. Nachrüstung für relevante Anlagen
 - schwarzfallfester Kommunikation
 - schwarzfallrobuste Kommunikation
- Rollenanpassung bei Akteuren
 - VNB: Nicht "nur" Lastzuschaltung (alte Welt)
 - Entwicklung von Konzepten zur Anlagenaggregation (viele kleinere EZA und Speicher wie eine große Anlage betreiben)
 - Erbringen von Systemdienstleistungen aus dem Verteilnetz
 - -> Synergien mit anderen Betriebsführungssystemen nutzen

Flächenkraftwerk (FLKW)

Quelle: Jonathan Bergsträßer: Areal Power Plant: Aggregation System to control a multitude of Distributed Generators during Power System Restoration - Field Test Results, Vortrag auf dem ETG-Kongress 2023, Kassel, https://doi.org/10.24406/publica-1621


Zusammenfassung / Ausblick

Zusammenfassung / Ausblick

- Netzwiederaufbau beginnt mit dem Schwarzstart, danach geht es erst richtig los
- Dezentrale Erzeugungsanlagen müssen in den NWA-Prozess integriert werden
- Verbesserung der technischen Verfügbarkeit und Erweiterung der technischen Eigenschaften von Erzeugungsanlagen
- Rollenänderungen bei Netz- und Anlagenbetreibern notwendig
- Entwicklung und Einführung von Aggregations- und Assistenzsystemen
- Weiterentwicklung / Anpassung bestehender Netzwiederaufbaukonzepte
- Erweiterte Bereitstellung von Systemdienstleistungen durch Erzeugungsanlagen, z.B. durch netzbildende Umrichter
- Planung von Verteilnetzinseln

Forschungsprojekte

Vielen Dank für Ihre Aufmerksamkeit

Kontakt

Holger Becker
Netzplanung und Netzbetrieb
Tel. +49 561 7294-426
Holger.Becker@iee.fraunhofer.de

Fraunhofer IEE
Joseph-Beuys Straße 8
34117 Kassel
www.iee.fraunhofer.de

