

SPECIALIZED EQUIPMENT AND SERVICES

- for onsite repairs and maintenance

Who's CNC Onsite?

- Established 2012
- Focused on the wind turbine industry
- Service customers globally with in-situ work
- Specialists in onsite (in-situ)
 high precision machining

What we do

Onsite high precision machining

- Up tower repair
- Blade root end repair (inserts)
- Flange milling
- Customized machines

What we offer

- Highly specialist technicians (GWO)
- Short response time
- Full flexibility
 - All inclusive
 - Buy/lease equipment (incl. training of operators)

Yaw ring repair

Up-tower repair

Up-tower repair

- Yaw ring teeth
- Yaw ring sliding surface
- Rotor lock
- Broken bolts/threads
- Generator shafts
- Torque arms
- Housings

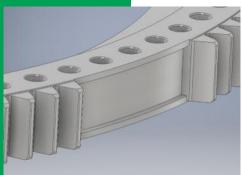
damaged threads

Yaw ring repair

Challenges:

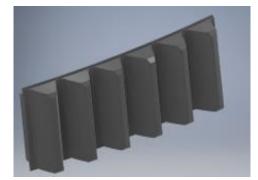
- Teeth get worn or brake
- Yaw ring exchange is expensive and time consuming

Solution:

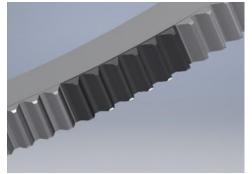

Full CNC controlled machine. Can remove worn-/damaged sections and a new segment can be bolted in place.

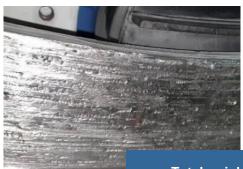
Benefits:

- No disassembly of turbine
- No use of cranes
- Reduced downtime
- No bottlenecks
 - Crane availability
 - Spare part availability
- Not depending on weather windows
- · Less coordination required


Step 1
Milling the damaged area

Step 2 Freeze the segment and mount it with special tool




Step 3

Freeze the segment and nount it with special tool

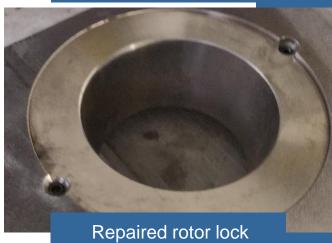
Disc Resurfacing tool

- Total weight below 100 kg
- Max weight per piece = 50 kg
- Can cut both sides of disc
- 400V 16Amp power required
- Feed rate @ normal yaw speed

Challenges:

Surface get worn or damaged Yaw ring exchange is expensive and time consuming.

Solution:


Onsite refurbishment of the surface by use of mobile grinding machine.

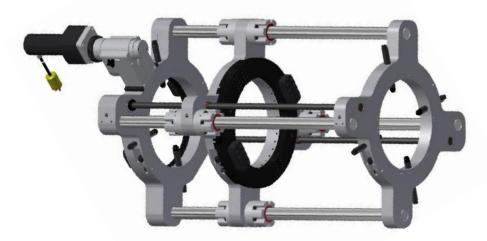
- No disassembly of turbine
- No use of cranes
- Reduced downtime
- No bottlenecks
 - Crane availability
 - Spare part availability
- Not depending on weather windows
- Less coordination required

Rotor lock repair

Challenges:

Rotor lock hole can get worn or damaged.

Rotor lock system not functioning correctly.


Solution:

Mobile machine for up-tower repair.

- Can be repaired up-tower.
- Ensure functionality of the system.
- Stop further damage development.

Generator shaft repair

Challenges:

Generator shafts can get worn or damaged by bearing inner rings or couplings spinning on the shaft.


Repair with replacement generator is expensive and time consuming.

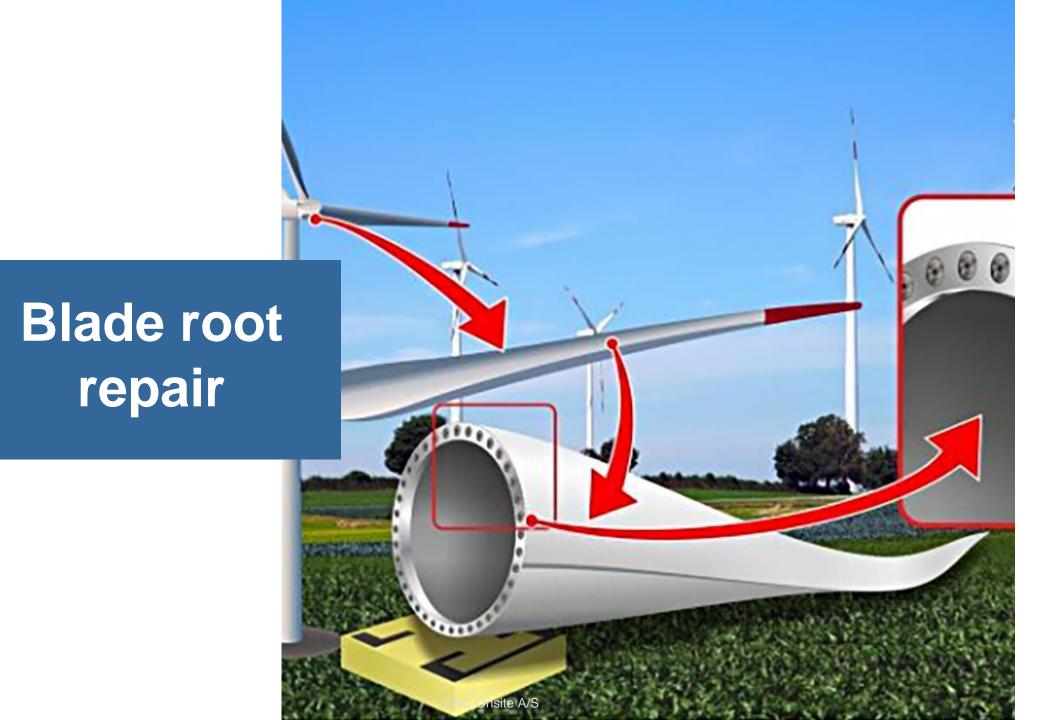
Solution:

Mobile machine for up-tower repair.

- Can be repaired up-tower
- Ensure functionality of the system
- Stop further damage development

Broken bolts and damaged threads

Challenges:


Bolts can break and/or threads can be damaged which can be critical to the integrity of the structure.

- Bolts placed in areas hard to access
- Standard equipment not suitable for uptower use
- Not possible/very difficult to get the parts to a workshop

Solution:

Mobile machine for up-tower repair.

- Can be repaired up-tower
- Ensure integrity of the connection
- Stop further damage development

Blade root repair

Loose bushings – full repair

Challenges:

Blade Root Ends can be damaged due to breakdowns or wear and tear after years in operation.

- Loose inserts
- Bolts jammed or broken
- Flange end damages

Solution:

Full CNC controlled machine. Can remove old inserts and/or do flange facing with very high precision.

Benefits:

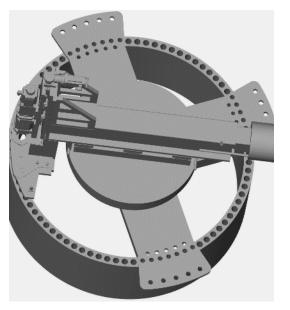
- Reuse of blades instead of scrapping
- Onsite repair solution
 - no transport
 - no disturbance of ongoing production
 - reduced down time of turbine
- Fast and proven process

Onsite A/S

Blade root repair

Loose bushings – partly repair

Challenges:


Blade Root Ends can be damaged due to breakdowns or wear and tear after years in operation.

- Loose inserts
- Bolts jammed or broken
- Flange end damages

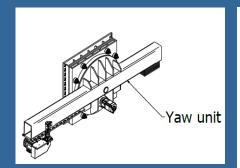
Solution:

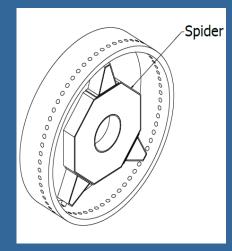
Semi automatic machine. Can remove old inserts and/or do flange facing with high precision.

- Easy to install (directly on blade)
- Easy to operate
- Onsite repair solution
 - no transport
 - no disturbance of ongoing production
 - reduced down time of turbine

Blade root repair

Damaged contact surface

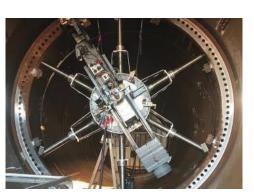

Challenges:


- Blade Root Ends can be damaged due to breakdowns or wear and tear after years in operation.
 - Loose inserts
 - Bolts jammed or broken
 - Flange end damages


Solution:

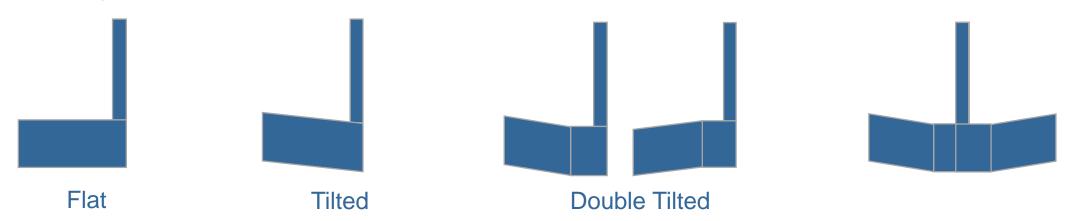
 Automatic machine. Can mill the contact surface with high precision.

- Easy to install (directly on blade)
- Easy to operate
- Onsite repair solution
 - no transport
 - no disturbance of ongoing production
 - reduced down time of turbine



Flange milling

Flange milling examples



- Monopiles (MP)
- Transition Pieces (TP)
- Towers
- Tower stands
- Sea fastening
- Transport frames

Current machine types

Туре	Cæsar	Asterix	Obelix	Goliath
Flange size	Ø1.800 – Ø4.000	Ø2.000 – Ø6.500	Ø2.400 – Ø10.000	Ø6.000 – Ø10.000
Position	Horizontal / vertical	Horizontal / vertical	Horizontal	Horizontal / vertical

Machining possibilities:

Cæsar Ø1.800 – Ø4.000

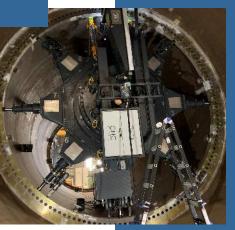
Horizontal and vertical

Asterix Ø2.000 – Ø6.500

Horizontal and vertical

Obelix Ø2.400 – Ø10.000

Horizontal




Goliat Ø6.000 – Ø11.000

Horizontal and vertical

What level of precision can you achieve with large diameter flanges?

Current requirements:

Parallelism //	Global flatness 360 $^\circ$ \Box	Local [□] flatness 30 °□
0,5mm	2mm	1mm

• Trend for future:

Parallelism //	Global flatness	360°	Local flatness	30 °
0,5mm	1mm		0,5mm	

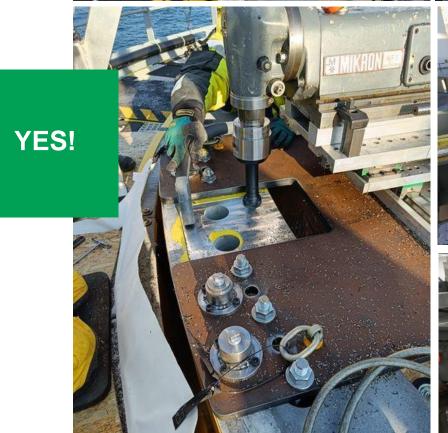
Achievable:

It is possible to achieve better tolerances.

It is not possible to give an exact limit, but finer tolerances can impact fabrication costs and/or process time (more inspections and lower speed).

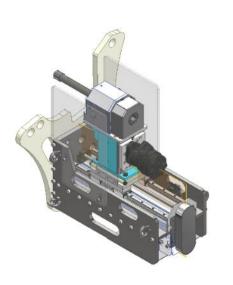
Now

- Maximum OD 11.000mm
- Maximum flange width
 - No limit as such
 - 360mm is max pr overflow


In 5 years

- The concept can be scaled up to match requirements
- Considerations
 - Delivery time
 - Transport
 - Handling

Is machning offshore possible?



Customized machines

CNC Onsite develops and builds customized machines for onsite repairs.

Our experienced team of engineers and technicians ensure efficient solutions based on onsite experience and craftmanship.

- Fast development process
- Proof of concept (based on standard components)
- Training of customers own employees

References

Good business

- Lower repair costs
- Lower down time
- Lower work pressure on organization

Because

- Avoid main component exchange (repair instead of exchange)
- No need for mobile cranes
- No need for turbine disassembly
- No heavy logistics (transport avoided)
- Less sensitive to weather conditions
- Not depending on workshop availability

Management team

Hans Løvlund Toft CTO/Teknisk direktør hlt@cnconsite.dk +45 5357 0043 Aage Dam
CEO/Direktør
ad@cnconsite.dk
+45 4028 8410

Søren Schmidt Kellenberger
CSO/ Salgsdirektør
ssk@cnconsite.dk
+45 2553 7650

Contact us

><

info@cnconsite.dk

Nordskellet 4, 7100 Vejle

+45 7011 0270

www.cnconsite.dk