

Guidelines on dual scanning lidar measurements for wind resource assessments

Robert Menke (DNV), Dominic Champneys (Vaisala), Richard Frühmann (DNV), Darshan Sathiyanarayanan (Vaisala), Matthias Steger (DNV)

VAISALA

Motivation

Aim

- Provide guidance in campaign planning, uncertainty assessment, documentation and decision making.
- Increase general acceptance of scanning lidars.

Motivation

Background

- Scanning lidars are increasingly being used for wind resource assessments.
- Currently there is no international standard defining their use.
- There is a guideline from NEDO released in March 2023.
 - Focused on offshore wind resource measurements
 - No advice on uncertainty assessment
- Further standardization activities:
 - IEA Task 52: Recommended practice for the use of scanning lidar
 - IEC 61400-50-5

General advantage of DSL

- no (or simplified) permitting process for installation
- able to measure at multiple points with a single setup
- spatial distribution information regarding wind speed

Scope of the white paper

- scanning lidar in a dual staring mode setup
- application to wind resource assessment
 - reasonably uniform flows, e.g. near shore measurement sites
- lidar verification method (white box)
- LoS uncertainty assessment approach

Scope of the document

Structure and content

- detailed run through all phases of a measurement campaign
 - 1. campaign planning
 - 2. lidar verification
 - 3. installation and commissioning
 - 4. operation and monitoring
 - 5. data processing
 - 6. uncertainty evaluation
 - 7. decommissioning and post-campaign verification
- detailed look at documentation and reporting for each phase
- focus on strategies to minimise uncertainty in each phase
- sample calculations and recommended methods

Lidar verification

Aim

- determine the correct function of the measurement system
- assess the measurement accuracy / uncertainty
 - Are the measured wind speeds accurate?
 - Are the measurements taken in the correct location?
- identify systematic and random error sources
 - Are there factors that can be corrected for in the SMC?
 - Are there factors that cannot be corrected and must be accounted for as uncertainties?

Lidar verification

Verification campaign

- Site requirements
 - met mast with anemometers
 - terrain
 - lidar installation location
- Methodology
 - setup and configuration of the lidar and reference system
 - data set requirements
 - data processing and filtering
- Key performance indicators

Lidar verification

Pointing Accuracy

- System inherent factors
 - pointing resolution, range gate lengths
- Factors to be determined at the verification stage
 - pointing repeatability, range accuracy, backlash
- · Factors that need to be assessed at each installation
 - inclination sensor alignment

LOS Wind Speed Accuracy

- Projection of reference to LOS
- Wind direction and wind speed limits
- Focus on white-box approach (61400-50-3 modified for scanning lidars)

Uncertainty assessment

	white-box approach (line-of-sight wind speed)	black-box approach (horizontal wind speed)
pros	generic (device specific and setup agnostic/adaptable)	direct comparison to a reference
cons	very complicated!! Not a direct comparison.	geometry specific, so difficult to transfer from verification to specific measurement campaign geometry

Uncertainty assessment

Uncertainty Assessment

An example is given that guides the user through the process:

- 1. Assess the uncertainty of the reference
- 2. Assess the uncertainty components of the comparison (e.g. distance between reference and RSD measurement locations)
- 3. Assess the uncertainty of the LoS wind speed
- 4. Assess the uncertainty of the reconstructed wind speed for the given measurement geometry

- Guidelines are developed for dual scanning lidar wind resource assessment measurements.
- The document serves to provide best practice guidance in:
 - campaign planning
 - verification and measurement campaign
 - uncertainty assessment
 - reporting and documentation
 - · decisions making
- Document currently under review and will be published soon (Q4 2023).

WHEN TRUST MATTERS

DN

VAISA

Please get in touch!

Robert Menke - <u>robert.menke@dnv.com</u> Dominic Champneys - <u>dchampneys@leosphere.com</u> Richard Frühmann - <u>richard.fruehmann@dnv.com</u> Darshan Sathiyanarayanan - <u>darshan.sathiyanarayanan@vaisala.com</u> Matthias Steger - <u>matthias.steger@dnv.com</u>

www.dnv.com

14 DNV ©